
List Manager 1.0

Developer’s Guide

June 2023

Department of Veterans Affairs (VA)

Office of Information and Technology (OIT)

Software Product Management (SPM)

ListMan 1.0 ii June 2023
Developer’s Guide

Revision History

Date Revision Description Author
06/30/2023 3.0 Updates:

• Reformatted document to follow
current documentation standards
and style guidelines.

• Added image and table captions
throughout.

• Verified document is Section 508
conformant.

• List Manager Patch VALM*1.0*10:
Updated the EN^VALM2():
Generic Selector API: Updated the
Options input parameter.

ListMan 1.0

VistA Infrastructure
Shared Services (VISS)
Development Team

04/09/2012 2.0 Updates: Miscellaneous.
ListMan 1.0

VistA Infrastructure (VI)
Development Team

07/1995 1.0 Initial List Manager (ListMan) 1.0
Developer’s Guide.
ListMan 1.0

VistA Infrastructure (VI)
Development Team

Patch Revisions
For the current patch history related to this software, see the Patch Module on FORUM.

ListMan 1.0 iii June 2023
Developer’s Guide

Table of Contents

Revision History .. ii
List of Figures ..vi
List of Tables ...vi
Orientation ... viii
1 Introduction ... 1
2 Getting Started .. 2

2.1 List Manager Main Screen ... 2
2.2 List Manager Workbench—^VALMWB .. 3
2.3 Installation and Setup .. 4

2.3.1 Major List Manager Components ... 4
2.3.2 Package Requirements .. 4
2.3.3 Installation .. 5
2.3.4 Terminal Type Attributes for List Manager Users 5

3 How to Make a List Manager Application .. 6
3.1 Define List Template .. 6

3.1.1 Create a New List Template .. 6
3.1.2 Create an Outline Routine ... 6
3.1.3 Edit the List Template .. 7
3.1.4 Edit the Outline Routine ... 8
3.1.5 What Comes Next? .. 9

3.2 Define List Array .. 10
3.2.1 Routine to Create List .. 10
3.2.2 Array to Store the List .. 10
3.2.3 Build the List Array Yourself ... 11
3.2.4 Build the List Array Using List Manager’s API .. 11

3.3 Define List Actions ... 14
3.3.1 How To Define an Action ... 14
3.3.2 How to Select List Items .. 15
3.3.3 Using the Entire Screen ... 16
3.3.4 When Your Action Completes .. 16

3.4 Define List Menu .. 17
3.4.1 Steps to Set Up Your Application’s Menu .. 17
3.4.2 Hidden Menu ... 18
3.4.3 Columnar Arrangement of Menu Items .. 18
3.4.4 Sub-Menus .. 18
3.4.5 Overriding the Default Action ... 19

3.5 Fine Tune Your Application .. 19
3.5.1 Entry Selection and Light Bar Scrolling .. 19

ListMan 1.0 iv June 2023
Developer’s Guide

3.5.2 Setting Video Attributes in Your List Line ... 19
3.5.3 Updating Items in the List .. 20
3.5.4 When the User Is In Scrolling Mode (Not Screen Mode) 20
3.5.5 Scroll-Locking Columns ... 20
3.5.6 Browsing Word-Processing Fields ... 21
3.5.7 Long Lists .. 21
3.5.8 Calling List Manager and Other Programs from Actions 21

3.6 Export Your List Manager Application .. 21
3.6.1 Protocols .. 22
3.6.2 List Templates ... 22
3.6.3 Before Kernel 8.0 ... 22

3.7 Example Code ... 23
3.7.1 LIST TEMPLATE PROTOCOL MENU ... 23
3.7.2 PROTOCOL Menu ... 24
3.7.3 PROTOCOL Action .. 25
3.7.4 DISPLAY TYPE ... 26
3.7.5 Application Code Examples ... 27

4 List Template Reference ... 31
4.1 Fields ... 31

4.1.1 Demographics Fields ... 31
4.1.2 Protocol Information Fields .. 31
4.1.3 List Region Fields .. 32
4.1.4 Other Fields ... 33
4.1.5 MUMPS Code Related Fields .. 34
4.1.6 Caption Line Information Fields ... 37

5 Application Programming Interfaces (APIs) ... 39
5.1 List Manager Variables .. 39
5.2 Kernel Video Variables .. 41
5.3 List Manager Generic Action Protocols .. 42
5.4 General APIs ... 43

5.4.1 EN^VALM(): Load a ListMan Template/Application 43
5.4.2 SHOW^VALM: Display Menu to User .. 43
5.4.3 PAUSE^VALM1: Pause the Screen ... 44
5.4.4 RANGE^VALM1: Change Date Range .. 44
5.4.5 EN^VALM2(): Generic Selector ... 44

5.5 List Line Text APIs ... 48
5.5.1 FLDUPD^VALM1(): Update Caption Field ... 48
5.5.2 $$SETFLD^VALM1(): Insert Text in a String ... 49
5.5.3 $$SETSTR^VALM1(): Set Up String for Display 49
5.5.4 FLDTEXT^VALM10(): Inserts Text in a Column 50

ListMan 1.0 v June 2023
Developer’s Guide

5.5.5 SET^VALM10(): Construct Initial List Array ... 51
5.6 List Line Video APIs ... 51

5.6.1 CNTRL^VALM10(): Set Video Attributes ... 51
5.6.2 FLDCTRL^VALM10(): Activate Video Control Sequences 52
5.6.3 RESTORE^VALM10(): Restores Video Attributes 53
5.6.4 SAVE^VALM10(): Save Current Video Attributes 54
5.6.5 SELECT^VALM10(): Highlights/Unhighlights Line in List 54
5.6.6 WRITE^VALM10(): Re-Write Line to Screen ... 55

5.7 Screen Control APIs .. 55
5.7.1 CHGCAP^VALM(): Changes Label on Caption Header 55
5.7.2 CLEAR^VALM1: Clean Up Screen after Error Occurs 56
5.7.3 FULL^VALM1: Sets Screen to Full Scrolling Region 56
5.7.4 INSTR^VALM1(): Inserts Text on Display Screen 56
5.7.5 RE^VALM4: Re-Displays List Header and List Areas 57
5.7.6 CLEAN^VALM10: Kills Data and Video Control Arrays 57
5.7.7 KILL^VALM10(): Deletes Video Attributes ... 58
5.7.8 MSG^VALM10(): Post Message to “Message Window” 58

5.8 Conversion APIs .. 59
5.8.1 $$FDATE^VALM1(): Returns Date in “MM/DD/YY” Format 59
5.8.2 $$FDTTM^VALM1(): Returns Date/Time in “MM/DD/YY@HH:MM”

Format ... 59
5.8.3 $$FTIME^VALM1(): Returns Date/Time in “MMM DD, YYYY@HH:MM”

Format ... 60
5.8.4 $$LOWER^VALM1(): Converts String from Uppercase to Lowercase 60
5.8.5 $$NOW^VALM1: Returns Value of “NOW” in External Format 61
5.8.6 $$UPPER^VALM1(): Converts String from Lowercase to Uppercase 61

Index ... 62

ListMan 1.0 vi June 2023
Developer’s Guide

List of Figures

Figure 1: Sample List Manager Display ... 2
Figure 2: List Manager Workbench ... 3
Figure 3: Using the Workbench to Set Up an Outline Routine for Your Application—

System Prompts and User Entries .. 6
Figure 4: Outline Routine Subroutines .. 8
Figure 5: Sample NEW PERSON File Entries Line Display .. 13
Figure 6: Sample M Code Selecting Single Entry Using EN^VALM2 16
Figure 7: Sample Protocol Menu Attached to a List Template with TYPE of PROTOCOL

 ... 23
Figure 8: Sample Protocol Menu ... 24
Figure 9: Sample PROTOCOL Action ... 25
Figure 10: Sample DISPLAY Type .. 26
Figure 11: Sample List Manager Application Codes ... 27
Figure 12: Sample Stub Routines When Adding New List Templates with the

Workbench ... 30
Figure 13: EN^ZZVALM2T API—Option “S” Example: System Prompts and User Entries

 ... 46
Figure 14: EN^ZZVALM2T API—Option “SO” Example: System Prompts and User

Entries .. 47
Figure 15: EN^ZZVALM2T API—Option “L” Example: System Prompts and User Entries

 ... 47
Figure 16: EN^ZZVALM2T API—Option “LO” Quit Example: System Prompts and User

Entries .. 48

List of Tables

Table 1: Documentation Symbol Descriptions ...ix
Table 2: Sample List Manager Display Key ... 2
Table 3: Package Requirements ... 4
Table 4: Terminal Type Attributes for List Manager Users .. 5
Table 5: List Template Field Categories .. 7
Table 6: Outline Routine Tags ... 9
Table 7: Setting DIR(0) Input Variable to Select Items .. 15
Table 8: VALMBCK Variable Settings When Returning to the List Manager from a

Protocol Action ... 16
Table 9: Sample Column Width Settings ... 17
Table 10: List Manager Variables .. 39
Table 11: Kernel Video Variables .. 41

ListMan 1.0 vii June 2023
Developer’s Guide

Table 12: List Manager Generic Action Protocols ... 42

ListMan 1.0 viii June 2023
Developer’s Guide

Orientation

How to Use this Manual
This manual provides advice and instruction about ListMan 1.0 Application Programming
Interfaces (APIs), Direct Mode Utilities, and other information for Veterans Health Information
Systems and Technology Architecture (VistA) application developers.

Intended Audience
The intended audience of this manual is the following stakeholders:

• Software Product Management (SPM)—VistA legacy development teams.

• System Administrators—System administrators at Department of Veterans Affairs (VA)
regional and local sites who are responsible for computer management and system
security on the VistA M Servers.

• Information Security Officers (ISOs)—Personnel at VA sites responsible for system
security.

• Product Support (PS).

Disclaimers
Software Disclaimer
 This software was developed at the Department of Veterans Affairs (VA) by employees of the
Federal Government in the course of their official duties. Pursuant to title 17 Section 105 of the
United States Code this software is not subject to copyright protection and is in the public
domain. VA assumes no responsibility whatsoever for its use by other parties, and makes no
guarantees, expressed or implied, about its quality, reliability, or any other characteristic. We
would appreciate acknowledgement if the software is used. This software can be redistributed
freely provided that any derivative works bear some notice that they are derived from it.

 CAUTION: Kernel routines should never be modified at the site. If there is an
immediate national requirement, the changes should be made by emergency
Kernel patch. Kernel software is subject to FDA regulations requiring Blood
Bank Review, among other limitations. Line 3 of all Kernel routines states:

 Per VA Directive 6402 (pending signature), this routine should not be
modified.

 CAUTION: To protect the security of VistA systems, distribution of this software
for use on any other computer system by VistA sites is prohibited. All requests

http://www.va.gov/vapubs/viewPublication.asp?Pub_ID=718&FType=2

ListMan 1.0 ix June 2023
Developer’s Guide

for copies of Kernel for non-VistA use should be referred to the VistA site’s local
Office of Information Field Office (OIFO).

Documentation Disclaimer
This manual provides an overall explanation of using ListMan; however, no attempt is made to
explain how the overall VistA programming system is integrated and maintained. Such methods
and procedures are documented elsewhere. We suggest you look at the various VA Internet and
Intranet SharePoint sites and websites for a general orientation to VistA. For example, visit the
Office of Information and Technology (OIT) Software Product Management (SPM) Intranet
Website.

 DISCLAIMER: The appearance of any external hyperlink references in this
manual does not constitute endorsement by the Department of Veterans Affairs
(VA) of this Website or the information, products, or services contained therein.
The VA does not exercise any editorial control over the information you find at
these locations. Such links are provided and are consistent with the stated
purpose of this VA Intranet Service.

Documentation Conventions
This manual uses several methods to highlight different aspects of the material:

• Various symbols are used throughout the documentation to alert the reader to special
information. Table 1 gives a description of each of these symbols:

Table 1: Documentation Symbol Descriptions

Symbol Description

NOTE / REF: Used to inform the reader of general information including
references to additional reading material.

CAUTION / RECOMMENDATION / DISCLAIMER: Used to caution the
reader to take special notice of critical information.

• Descriptive text is presented in a proportional font (as represented by this font).

ListMan 1.0 x June 2023
Developer’s Guide

• Conventions for displaying TEST data in this document are as follows:
o The first three digits (prefix) of any Social Security Numbers (SSN) begin with either

“000” or “666”.
o Patient and user names are formatted as follows:

− <Application Name/Abbreviation/Namespace>PATIENT,<N>

− <Application Name/Abbreviation/Namespace>USER,<N>

Where:

− <Application Name/Abbreviation/Namespace> is defined in the Approved
Application Abbreviations document.

− <N> represents the first name as a number spelled out and incremented with each
new entry.

For example, in ListMan (VALM) test patient and user names would be documented
as follows:

VALMPATIENT,ONE;VALMPATIENT,TWO; VALMPATIENT,THREE; …
VALMPATIENT,14; etc.
VALMUSER,ONE; VALMUSER,TWO; VALMUSER,THREE; …
VALMUSER,14; etc.

• “Snapshots” of computer online displays (i.e., screen captures/dialogues) and computer
source code is shown in a non-proportional font and may be enclosed within a box.
o User’s responses to online prompts are boldface and (optionally) highlighted in

yellow (e.g., <Enter>).
o Emphasis within a dialog box is boldface and (optionally) highlighted in blue

(e.g., STANDARD LISTENER: RUNNING).
o Some software code reserved/key words are boldface with alternate color font.
o References to “<Enter>” within these snapshots indicate that the user should press

the Enter key on the keyboard. Other special keys are represented within < > angle
brackets. For example, pressing the PF1 key can be represented as pressing <PF1>.

o Author’s comments are displayed in italics or as “callout” boxes.

 NOTE: Callout boxes refer to labels or descriptions usually enclosed within a
box, which point to specific areas of a displayed image.

• This manual refers to the M programming language. Under the 1995 American National
Standards Institute (ANSI) standard, M is the primary name of the MUMPS

ListMan 1.0 xi June 2023
Developer’s Guide

programming language, and MUMPS is considered an alternate name. This manual uses
the name M.

• Descriptions of Direct Mode utilities are prefaced with the standard M “>” prompt to
emphasize that the call is to be used only in Direct Mode. They also include the M
command used to invoke the utility. The following is an example:

>D ^XUP

• The following conventions are used with regards to APIs:
o The following API types are documented:

− Supported:
This applies where any VistA application may use the attributes/functions defined
by the Integration Control Registration (ICR); these are also called “Public”. An
example is an ICR that describes a standard API. The package that
creates/maintains the Supported Reference must ensure it is recorded as a
Supported Reference in the ICR database. There is no need for other VistA
packages to request an ICR to use these references; they are open to all by default.

− Controlled Subscription:
Describes attributes/functions that must be controlled in their use. The decision to
restrict the Integration Control Registration (ICR) is based on the maturity of the
custodian package. Typically, these ICRs are created by the requesting package
based on their independent examination of the custodian package’s features. For
the ICR to be approved the custodian grants permission to other VistA packages
to use the attributes/functions of the ICR; permission is granted on a one-by-one
basis where each is based on a solicitation by the requesting package.

 Private APIs are not documented.

o Headings for developer API descriptions (e.g., supported for use in applications and
on the Database Integration Committee [DBIC] list) include the routine tag (if any),
the caret (^) used when calling the routine, and the routine name. The following is an
example:

EN1^XQH

o For APIs that take input parameter, the input parameter is labeled “required” when it

is a required input parameter and labeled “optional” when it is an optional input
parameter.

ListMan 1.0 xii June 2023
Developer’s Guide

o For APIs that take parameters, parameters are shown in lowercase and variables are
shown in uppercase. This is to convey that the parameter name is merely a
placeholder; M allows you to pass a variable of any name as the parameter or even a
string literal (if the parameter is not being passed by reference). The following is an
example of the formatting for input parameters:

XGLMSG^XGLMSG(msg_type,[.]var[,timeout])

o Rectangular brackets [] around a parameter are used to indicate that passing the

parameter is optional. Rectangular brackets around a leading period [.] in front of a
parameter indicate that you can optionally pass that parameter by reference.

o All APIs are categorized by function. This categorization is subjective and subject to
change based on feedback from the development community. In addition, some APIs
could fall under multiple categories; however, they are only listed once under a
chosen category.

APIs within a category are first sorted alphabetically by Routine name and then
within routine name are sorted alphabetically by Tag reference. The $$, ^, or ^%
prefixes on APIs is ignored when alphabetizing.

• All uppercase is reserved for the representation of M code, variable names, or the formal
name of options, field/file names, and security keys (e.g., the XUPROGMODE security
key).

 NOTE: Other software code (e.g., Delphi/Pascal and Java) variable names and
file/folder names can be written in lower or mixed case (e.g., CamelCase).

Entry Points
For Application Programming Interface (AI) entry points that take input variables, the input
variable is labeled optional if it is optional; otherwise, it is a required variable.
For entry points that take parameters, parameters are listed in lowercase. This is to convey that
the listed parameter name is merely a placeholder. MUMPS (M) allows you to pass a variable of
any name as the parameter or even a string literal (if the parameter is not being passed by
reference).
The following is an example of the documentation format for input parameters:

D XGLMSG^XGLMSG(msg_type,[.]var[,timeout])

ListMan 1.0 xiii June 2023
Developer’s Guide

Rectangular brackets [] around a parameter are used to indicate that passing the parameter is
optional. Rectangular brackets around a leading period in front of a parameter indicate that you
can optionally pass that parameter by reference.

Documentation Navigation
This document uses Microsoft® Word’s built-in navigation for internal hyperlinks. To add Back
and Forward navigation buttons to the toolbar, do the following:

1. Right-click anywhere on the customizable Toolbar in Word (not the Ribbon section).
2. Select Customize Quick Access Toolbar from the secondary menu.
3. Select the drop-down arrow in the “Choose commands from:” box.
4. Select All Commands from the displayed list.
5. Scroll through the command list in the left column until you see the Back command

(circle with arrow pointing left).
6. Select/Highlight the Back command and select Add to add it to your customized toolbar.
7. Scroll through the command list in the left column until you see the Forward command

(circle with arrow pointing right).
8. Select/Highlight the Forward command and select Add to add it to the customized

toolbar.
9. Select OK.

You can now use these Back and Forward command buttons in the Toolbar to navigate back
and forth in the Word document when selecting hyperlinks within the document.

 NOTE: This is a one-time setup and is automatically available in any other Word
document once you install it on the Toolbar.

How to Obtain Technical Information Online
Exported VistA M Server-based software file, routine, and global documentation can be
generated using Kernel, MailMan, and VA FileMan utilities.

 NOTE: Methods of obtaining specific technical information online is indicated where
applicable under the appropriate section.

Help at Prompts
VistA M Server-based software provides online help and commonly used system default
prompts. Users are encouraged to enter question marks at any response prompt. At the end of the

ListMan 1.0 xiv June 2023
Developer’s Guide

help display, you are immediately returned to the point from which you started. This is an easy
way to learn about any aspect of VistA M Server-based software.

Obtaining Data Dictionary Listings
Technical information about VistA M Server-based files and the fields in files is stored in data
dictionaries (DD). You can use the List File Attributes [DILIST] option on the Data
Dictionary Utilities [DI DDU] menu in VA FileMan to print formatted data dictionaries.

 REF: For details about obtaining data dictionaries and about the formats available, see
the “List File Attributes” section in the “File Management” section in the VA FileMan
Advanced User Manual.

Assumptions
This manual is written with the assumption that the reader is familiar with the following:

• VistA computing environment:
o ListMan—VistA M Server software
o Kernel—VistA M Server software
o VA FileMan data structures and terminology—VistA M Server software

• Microsoft® Windows environment

• M programming language

Reference Materials
Readers who wish to learn more about ListMan should consult the following:

• List Manager 1.0 Developer’s Guide (this manual)

• ListMan VA Intranet Website.
This site contains other information and provides links to additional documentation.

VistA documentation is made available online in Microsoft® Word format and in Adobe®
Acrobat Portable Document Format (PDF). The PDF documents must be read using the Adobe®
Acrobat Reader, which is freely distributed by Adobe® Systems Incorporated at:
http://www.adobe.com/
VistA documentation can be downloaded from the VA Software Document Library (VDL):
http://www.va.gov/vdl/

http://www.adobe.com/
http://www.va.gov/vdl/

ListMan 1.0 xv June 2023
Developer’s Guide

 REF: List Manager manuals are located on the VDL at:
https://www.va.gov/vdl/application.asp?appid=14

VistA documentation and software can also be downloaded from the Product Support (PS)
Anonymous Directories.

https://www.va.gov/vdl/application.asp?appid=14

ListMan 1.0 1 June 2023
Developer’s Guide

1 Introduction
The Veterans Health Information Systems and Technology Architecture (VistA) List Manager
(aka ListMan) provides a generic method of presenting lists of items to terminal users. Its core
functions are:

• Display a list of items.

• Users can browse through the list.

• Users can select one or more items from the list.

• Users can execute an action for selected list items.

• You can use List Manager recursively within an action.

The List Manager Developer’s Guide is designed to provide the Department of Veterans Affairs
(VA) developer with “how to” information on creating applications using List Manager. This
manual is a full reference for creating List Manager applications.
List Manager was originally developed as an interface for the Scheduling module of VistA’s
MAS V. 5.2 package. Since then it has been used as an interface for a number of other
applications, including Text Integration Utility (TIU).

ListMan 1.0 2 June 2023
Developer’s Guide

2 Getting Started
2.1 List Manager Main Screen
Figure 1 is an illustration of the components of a typical List Manager display. The screen is
divided into three regions:

• Header Area

• List Area

• Action Area

Figure 1: Sample List Manager Display

Table 2: Sample List Manager Display Key

Key Controlled By

1 Header Code

2 Expand Code

3 Top Margin

4 Bottom Margin, Right Margin

5 Screen Title

ListMan 1.0 3 June 2023
Developer’s Guide

Key Controlled By
6 Caption Line Columns

7 Column

8 Array Name

9 Display Text

10 Date Range Limit

You are only allowed to directly WRITE to the “Action Area.” The List Manager controls the
other two areas. However, you can modify the contents of the “Header Area” and “List Area” by
using calls in the List Manager API, and by changing the HEADER and LIST arrays passed to
the List Manager.

2.2 List Manager Workbench—^VALMWB
The List Manager Workbench (Figure 2) allows the development of a List Manager application
without having to move from one development tool to another. Load the Workbench by calling
the ^VALMWB routine.

Figure 2: List Manager Workbench

ListMan 1.0 4 June 2023
Developer’s Guide

The Workbench allows you to edit all of the data for the following:

• List Template

• Action Protocols

• Menu Protocols

• Input Templates

• Routines

In short, every part of a List Manager application.
You can run a List Template from the Workbench. When you run a template, you are prompted
for any “setup” code to initialize variables. This is needed if the template is not a top-level
template. After “running” the template, you are returned to the Workbench. The Workbench
itself is a List Manager application.
We recommend that you do all List Template development using the Workbench. As new
features become available, the Workbench will automatically present them to you.

2.3 Installation and Setup
2.3.1 Major List Manager Components
 The major List Manager components include:

• LIST TEMPLATE (#409.61) file.

• PROTOCOL (#101) file.

• Routines in the VALM* namespace (List Manager routines).

• Routines in the XQOR* namespace (Protocol Processing routines).

2.3.2 Package Requirements
Table 3 lists the packages and versions that must be present for List Manager to run properly:

Table 3: Package Requirements

Package Version

Order Entry Results Reporting (OERR) 2.5 or greater

Kernel 6.5 or greater

ListMan 1.0 5 June 2023
Developer’s Guide

2.3.3 Installation
To install the List Manager, do the following routine in Programmer Mode:

D ^VALMINIT

2.3.4 Terminal Type Attributes for List Manager Users
Table 4 lists the terminal type attributes that must be defined for List Manager users in order to
effectively use the List Manager:

Table 4: Terminal Type Attributes for List Manager Users

TERMINAL TYPE Field Example Field Values for VT-100 Terminal
Form Feed #,$C(27,91,50,74,27,91,72)

XY CRT W $C(27,91),DY+1,$C(59),DX+1,$C(72)

Erase to End of Page $C(27,91,74)

Insert Line $C(27,91),“1L”

Underline On $C(27,91,52,109)

Underline Off $C(27,91,109

High Intensity $C(27,91,49,109)

Normal Intensity $C(27,91,109)

Save Cursor Position $C(27,55)

Restore Cursor Pos $C(27,56)

Set Top/Bottom Marg $C(27,91),+IOTM,$C(59),+IOBM,$C(114)

SGR Attributes Off $C(27,91,109)

ListMan 1.0 6 June 2023
Developer’s Guide

3 How to Make a List Manager Application
3.1 Define List Template
The first step to create a List Manager application is to create the List Template for your
application. A List Template is the core of a List Manager application; all of the crucial
information that determines how a list works is stored in an application’s List Template. The best
way to set up (and maintain) a List Template is to use the Workbench.

3.1.1 Create a New List Template
When you invoke the Workbench, it asks you for a List Template name. You can either enter an
existing one or create a new one.

3.1.2 Create an Outline Routine
List Templates depend on calling several subroutines to perform specific actions, including:

• Initializing your application.

• Creating the array of list items that becomes your list.

As such, creating these subroutines is central to your List Template. That is why the next
question you are asked after you name your template is “Enter Routine Name: ”.
The Workbench can create an outline routine that contains subroutines to perform all of the
functions List Manager requires. Entering a name is optional. However, if you enter a name for a
routine, the Workbench creates an outline routine for your application with stub tags and code
for the template. The created List Template is then immediately executable.
Figure 3 demonstrates how you can use the Workbench to set up an outline routine for your
application:

Figure 3: Using the Workbench to Set Up an Outline Routine for Your Application—System
Prompts and User Entries

Select LIST TEMPLATE NAME: ZZLIST
Are you adding 'ZZLIST' as a new LIST TEMPLATE (the 14TH)? Y <Enter> (Yes)

>>> The system will create a stub routine...

>>> Enter Routine Name: ZZLIST

I am going to create a series of 'ZZLIST*' routines.
Is that OK? Yes// <Enter> (Yes)

>>> Building 'ZZLIST' stub routine
ZZLIST has been filed

ListMan 1.0 7 June 2023
Developer’s Guide

A fully functional List Manager application (with a “dummy” list of items) has now been
created; and you are placed in the Workbench with the new List Template loaded.

3.1.3 Edit the List Template
The Workbench lets you edit all of the fields in the List Template. It organizes the fields in a list
template into six distinct categories, as shown in Table 5.

Table 5: List Template Field Categories

Category Description
Demographics Set up the list name, generic prompt, and screen title.

Protocol Information Set up the menus for your list.

List Region Set the screen region for the list.

Other Fields Set miscellaneous list attributes.

MUMPS Code Related Specify the routines for:
• Header
• Entry
• Exit
• Expand
• Help

Optionally, enter the array name in which that list is kept. When
List Manager creates an outline routine, it uses that routine for
most of these tasks.

Caption Line Information Define the contents of the caption line (list headings).

The Workbench also lets you perform a number of actions beyond editing the List Template.
One of the actions you can perform is running the list (Run List action). Try running the list now
as set up by default by List Manager. This gives you an idea of what a bare bones List Manager
application looks like.
Later, as you add enhancements to your application, you can use the Workbench to edit a number
of your List Template’s fields.

ListMan 1.0 8 June 2023
Developer’s Guide

3.1.4 Edit the Outline Routine
The outline routine that was created contains six specific subroutines (Figure 4). By going
through each subroutine, you see the beginning of your application.

Figure 4: Outline Routine Subroutines

ZZKYLM ; ; 08-OCT-1996
 ;; ;
EN ; -- main entry point for ZZLIST
 D EN^VALM("ZZLIST")
 Q
 ;
HDR ; -- header code
 S VALMHDR(1)="This is a test header for ZZLIST."
 S VALMHDR(2)="This is the second line"
 Q
 ;
INIT ; -- init variables and list array
 F LINE=1:1:30 D SET^VALM10(LINE,LINE_" Line number "_LINE)
 S VALMCNT=30
 Q
 ;
HELP ; -- help code
 S X="?" D DISP^XQORM1 W !!
 Q
 ;
EXIT ; -- exit code
 Q
 ;
EXPND ; -- expand code
 Q
 ;

ListMan 1.0 9 June 2023
Developer’s Guide

Table 6: Outline Routine Tags

Outline
Routine
Tag

Description

EN Application Entry Point: This section of the code in the outline routine is the
line of code to independently invoke List Manager and load your List Template
(and your list). If you were to make an option for your List Manager application,
you would set the option’s RUN ROUTINE field to this tag and routine.

HDR Header Code: In this very simple section of the outline routine, two nodes of
the VALMHDR array are set. These should be set to the text lines to display in
the “Header Area” of the List Manager screen. List Manager calls this
subroutine when initializing your list.

INIT List Creation: In this section of the outline routine, all the work is done to
create the list of items that is displayed to the user by List Manager. Setting up
your list is discussed in more detail in the ”Define List Array)” section.

HELP Help: You can set up custom help in this subroutine. When a user enters a “?”
at the menu prompt, your custom help would be called. This is an optional
feature.

EXIT Exit Code: Use this subroutine to clean up variables and any other exit
processing your application needs to perform before exiting.

EXPND Expand Code: This subroutine is for placing MUMPS (M) code to display a
detailed inquiry-type report/screen for a specific entry in the list. This is an
advanced, optional feature.

In the “Define List Array” section you edit the outline routine’s INIT subroutine, replacing the
“dummy” list of items created in the stub subroutine with your application’s list items. This is
the next step in your application, setting up the list of items for List Manager to display to your
list user.

3.1.5 What Comes Next?
You have created a List Template for your application. You have created an outline routine for
your application. So, what comes next?
You need to set up the list of items that your application displays to your list user. Setting up the
list is the second of four steps in creating a List Manager application.
To add functionality to your application, you need to create Action-type protocols. These are
akin to menu options and are the actions available to your list users in the “Action Area” at the
bottom of the List Manager screen (Figure 1). These actions let your list users select items and
perform actions with the select items. Creating actions is the third of four steps in creating a
List Manager application.
Finally, once you create some Action-type protocols, you need to create a Menu-type protocol.
Then, attach all of your actions to the Menu-type protocol, and designate the menu protocol as

ListMan 1.0 10 June 2023
Developer’s Guide

your List Template’s Protocol Menu. Then, run your application and test out all of your actions.
Organizing your menu is the fourth of four steps in creating a List Manager application.

3.2 Define List Array
Once you have created a List Template to define your List Manager application, the next step is
to set up the array (list) of items that is displayed to your list user. You set up the list array using
M code in the routine specified in the List Template’s ENTRY CODE field.

3.2.1 Routine to Create List
The routine specified in the ENTRY CODE field in the “MUMPS Code Related Fields” section
of the Workbench (Figure 2) is what List Manager calls to set up your list. So, you must set your
list array up in a routine.
If you let List Manager create an outline routine for your List Template, it sets this field in the
List Template to the INIT label of the routine it creates. In the created outline routine, it sets up a
“dummy” list using the SET^VALM10 entry point. If you look at the code it puts in this
subroutine, you can see one way to create a list. You can set up a list entirely yourself, or you
can use some of List Manager’s entry points. Both methods are described below.

3.2.2 Array to Store the List
The ARRAY NAME field in a List Template, in the “MUMPS Code Related Fields” section of
the Workbench, should contain the name of the array that holds your list of items to be
displayed.

 NOTE: The array name must be preceded by a space character. This is needed to allow
global specification. VA FileMan does not allow “^” as the first character. The array can
be either a local or global variable.

The array of list items you create needs to follow the format used in word-processing fields:

 ^TMP("SDAM",$J,line #,0)=display_string

There is one case in which you do not need to specify the array name in the ARRAY NAME
field. By making calls to SET^VALM10, you can have the List Manager decide where to store
the list array. This method of creating a list is discussed in the “Build the List Array Yourself”
section.

ListMan 1.0 11 June 2023
Developer’s Guide

3.2.3 Build the List Array Yourself
To create a list of items yourself, do the following:

1. In the routine called by the ENTRY CODE field of the List Template, make an array of
items in the list. Make sure your array is in the same format as word-processing fields,
that is, ^TMP(“SDAM”,$J,line #,0)=display_string). The list array should start with
list item 1, and there should be no gaps in the array line sequence.

2. It is a good idea to include the line number as the first part of the text of each display line.
This aids list users when selecting items.

3. Set the ARRAY NAME field of the List Template to the name of the array.
4. Set the VALMCNT variable equal to the number of items in your list.
5. You are done!

Somewhere else, you may want to store a corresponding index of the entry number for items in
your list, if your items correspond to entries in a file. Then, when you get to making actions, you
are able to associate an item in the list with the entry number from which it came.

3.2.4 Build the List Array Using List Manager’s API
List Manager provides an API, which includes entry points for creating and maintaining lists.

3.2.4.1 Creating the Array with SET^VALM10
You can create the array entries in your list using the SET^VALM10 entry point. When you do
this, you do not need to set an explicit array name in the List Templates ARRAY NAME field.
List Manager maintains the array itself, without you needing to know where it is stored. If you
need to reference lines in the array, you can use the @VALMAR@(<line #>,0) syntax.
To set up and maintain your array using SET^VALM10, do the following:

1. All of the code that follows should be in the routine called by the ENTRY CODE field of
the List Template.

2. Keep in mind that your list array should start with list item 1, and that there should be no
gaps in the array sequence of lines.

3. To add a line to the list, make a call to SET^VALM10:

 D SET^VALM10(line_num,display_text)

4. It is a good idea to include the line number as the first part of the text of each display line.

This aids list users when selecting items.

ListMan 1.0 12 June 2023
Developer’s Guide

5. If the items in your list correspond to file entries, you may want to keep track of the
internal entry number (IEN) for each list item. Simply use the optional third parameter of
the SET^VALM10 call to associate an internal entry number with your list item. You can
then retrieve the associated internal entry number for any line with the code:

S Y=$O(@VALMAR@("IDX",56,""))

6. When you are done adding lines to the list, set the VALMCNT variable equal to the

number of items in your list.
7. You are done!

3.2.4.2 Setting Up Text Lines with Captions and $$SETFLD^VALM1
To help formatting each line of text for display, you may want to consider using captions and the
$$SETFLD^VALM1 API. This lets you format text in a line based on any caption items you
may have set up in your List Template. In the “Caption Line Information” section of the
Workbench, you can enter caption items. Each caption item has the following:

• Name

• Length

• Column position

• Default video attributes

• Display text fields

$$SETFLD^VALM1 lets you position pieces of text in your list lines based on how you set up
captions for your line in the List Template.
Supposing you have set up four caption items in your List Template, named:

• “LINENO”

• “NAME”

• “INIT”

• “FM ACCESS CODE”

ListMan 1.0 13 June 2023
Developer’s Guide

When you create your list array, you could loop through entries in the NEW PERSON (#200)
file, and format a line to display for each NEW PERSON entry as follows:

Figure 5: Sample NEW PERSON File Entries Line Display

 S LINE=0,EN=.9 F S EN=$O(^VA(200,EN)) Q:'+EN D
 .S LINE=LINE+1
 .S ZZNODE0=$G(^VA(200,EN,0)),LINEVAR=""
 .S ZZNA=$P(ZZNODE0,U,1),ZZIN=$P(ZZNODE0,U,2),ZZFM=$P(ZZNODE0,U,4)
 .S LINEVAR=$$SETFLD^VALM1(LINE_".",LINEVAR,"LINENO")
 .S LINEVAR=$$SETFLD^VALM1(ZZNA,LINEVAR,"NAME")
 .S LINEVAR=$$SETFLD^VALM1(ZZIN,LINEVAR,"INIT")
 .S LINEVAR=$$SETFLD^VALM1(ZZFM,LINEVAR,"FM ACCESS CODE")
 .D SET^VALM10(LINE,LINEVAR) ; adds formatted line to list array

Now, your lines of text are set up according to your captions in your List Template. And if you
adjust the positions of your List Template captions, your text lines are automatically adjusted
too!

 NOTE: If you have a large NEW PERSON (#200) file, and you try this example, make
sure you loop only through some subset of it; lists become difficult to use once there are
more than a certain number of screens in the list (10 screens in a list is probably a good
limit).

3.2.4.3 Setting and Displaying Video Attributes for List Lines with
FLDCTRL^VALM10

In the “Caption Line Information” section of the Workbench, you can enter caption items. Each
caption item has the following:

• Name

• Length

• Column position

• Default video attributes

• Display text fields

This provides a way to organize your lines of text, based on caption positions.
Using the FLDCTRL^VALM10 entry point, you can set the video attributes for different
portions of your line based on the default video attributes entered for every caption in the line.
For example, you have a caption of length 10 starting at column 40, with a default video attribute
of REVERSE. If you call FLDCTRL^VALM10 for a line number, all default video attributes

ListMan 1.0 14 June 2023
Developer’s Guide

for the line are activated, and the region of that line from column 40 to column 49 are displayed
in reverse video.
To activate the default video attributes for all lines in your array, do the following:

1. Using the Workbench, set up caption items for each portion of your display line. Set the
default video attributes as desired for each caption item.

2. After you add each line to the list array, make a call to FLDCTRL^VALM10(line). So,
you need to call FLDCTRL^VALM10 once for each line you add to the array.

3. When you run your list, each line you called FLDCTRL^VALM10 is displayed with the
video attributes set up in the List Template captions.

3.3 Define List Actions
Once you have created your List Template, and your list, the next step is to create actions for
your list. Actions are what appear as menu items in the bottom of the List Manager screen. They
allow you to launch any routine from a List Manager menu. Actions are stored as protocols, of
TYPE ACTION, in the PROTOCOL (#101) file.
List Manager supplies a set of pre-defined actions that you include with your List Manager
application. It is usually a good idea to make use some of these, such as VALM DOWN A
LINE, VALM UP ONE LINE, VALM NEXT SCREEN, etc. to provide the basic list
functionality users expect.
In addition, you will probably want to define your own actions to add your own custom
functionality to your list.

3.3.1 How To Define an Action
To define an action, do the following:

1. From the Workbench, choose PE for Protocol Edit.
2. Add a new protocol.
3. Set the new protocol’s TYPE to ACTION.
4. Set the ITEM TEXT field to the menu item text for this action.
5. Set the ENTRY ACTION field to call a routine that performs your action(s).
6. Use the EXIT ACTION field to set List Manager status variables before returning control

to List Manager.
7. Add your new action-type protocol to the menu-type protocol that is the main menu for

your application; this makes it a menu item in List Manager.

 REF: For information on how to do this, see the “Define List Menu” section.

ListMan 1.0 15 June 2023
Developer’s Guide

The following are some more issues to consider for your actions:

• How to select items from the list in your action.

• How to determine in what Screen Mode the user is located.

• Getting control of the screen.

• What List Manager should do when your action completes.

• How to display a custom message after completing an action.

3.3.2 How to Select List Items
In the routine called by an action, you may want to select an item or items from the List Manager
list. One easy way to do this is to make a ^DIR call in your action. Set up the DIR(0) input
variable to ask for numbers in the range of the entire list, or only what items are displayed on the
current screen, as follows (Table 7):

Table 7: Setting DIR(0) Input Variable to Select Items

List Item Selection DIR(0) Input Variable

1 item from entire list S DIR(0)="N^1:"_VALMCNT_":0"

1 item from current screen S DIR(0)="N^"_VALMBG_":"_VALMLST_":0"

Set of items from entire list S DIR(0)="L^1:"_VALMCNT

Set of items from current screen S DIR(0)="L^"_VALMBG_":"_VALMLST

The interaction with the user takes place in the lower part of the screen. From the output of the
^DIR call, you have the array number(s) of the selected item(s); you can then perform whatever
action you would like with the selected item(s). If the user chooses an item or set of items (as
reflected in the output variables from the ^DIR call), you can either process the items
immediately, or highlight them (current screen only) for further action.
Another way to select entries is to use the List Manager entry point EN^VALM2. This is a
generic selector that prompts the user to select list items from the current screen only.

ListMan 1.0 16 June 2023
Developer’s Guide

Figure 6 is a sample of the code you could call to select a single entry using EN^VALM2:

Figure 6: Sample M Code Selecting Single Entry Using EN^VALM2

 N ZZVALM,ZZEN
 S ZZVALM="DUZ^1^ASDF^ASDF" ;?? Need to confirm how to set this up!
 D EN^VALM2(ZZVALM,"O")
 S ZZEN=$O(VALMY("")) ; get line number of selected entry
 I '+ZZEN W !,"No Entry Selected!" H 5 Q
 W !,"You selected ",@VALMAR@(ZZEN,0) H 5
 Q

3.3.3 Using the Entire Screen
If your action needs control over the entire screen, make a call to FULL^VALM1 at the
beginning of your action’s code. This call changes the scrolling region to be the full screen, and
turns word-wrap on, and all user interaction is in Scrolling Mode. When you return control back
to the List Manager, set VALMBCK to “R”. This refreshes the screen and resets the scrolling
region as needed by List Manager.

3.3.4 When Your Action Completes
When returning to the List Manager from a protocol action, make sure the VALMBCK variable
is set (Table 8). This tells List Manager what to do when returning from your action.

Table 8: VALMBCK Variable Settings When Returning to the List Manager from a Protocol Action

VALMBCK Value Description
R Refresh Screen.

<NULL> Clear bottom portion of screen and prompt for action.

Q Exit (Quit) List Manager.

If not defined after an action, the List Manager acts like it was set to “Q” (Quit).
If you want to display a custom message in the message window after completing an action, set
the VALMSG variable with the text desired. The message area allows up to 50 characters.

 REF: For more information, see the description of MSG^VALM10.

ListMan 1.0 17 June 2023
Developer’s Guide

3.4 Define List Menu
The final step in building a List Manager application is to create the menu for your list. This
provides the set of choices at the bottom of the List Manager screen. You can create new actions
to add to your menu, and/or use generic List Manager actions as well.

3.4.1 Steps to Set Up Your Application’s Menu
To set up your application’s menu, do the following:

1. From the Workbench, choose PE for Protocol Edit.
2. Add a new protocol.
3. Set the new protocol’s TYPE to MENU.
4. Set the new protocol’s COLUMN WIDTH as follows:

Table 9: Sample Column Width Settings

of Columns Desired Column Width Setting

1 1

2 40

3 26

5. Set the new protocol’s MNEMONIC WIDTH to a width that provides for the length of
your longest menu item mnemonic, plus white space to separate the mnemonics from the
menu text. If your longest mnemonic is 2 characters, setting this field to 4 provides 2
characters of white space.

6. Add any actions (either custom actions created by you, or generic actions) as ITEMS to
the new protocol. You can set a mnemonic and a sequence number for each item.

7. You must include the following code in the HEADER field of the menu protocol:
D SHOW^VALM

The SHOW^VALM API properly displays the list of actions to the user in the “Action
Area.”

8. In the MENU PROMPT field, set the text by which the users will be prompted. For
example: “Select Action: ” is a good choice.

9. Once you finish editing the menu protocol, return to the Workbench. Set the TYPE OF
LIST to PROTOCOL (not DISPLAY!). This enables the list to use your new protocol,
instead of the standard VALM DISPLAY protocol.

10. Set the PROTOCOL MENU to the name of the menu-type protocol you just created.
11. Test your new menu by choosing “Run List” from the Workbench.

ListMan 1.0 18 June 2023
Developer’s Guide

You should consider the following additional issues when setting up protocols for use by the List
Manager:

• Hidden Menu.

• Columnar Arrangement of Menu Items.

• Sub-Menus.

• Overriding the Default Action.

3.4.2 Hidden Menu
In the Workbench, you can set your list’s Hidden Menu to the name of any menu protocol. This
is typically used to provide some of the more basic actions like line up and line down, especially
when the main menu has a lot of custom items. By default, the Workbench sets up lists to use the
generic VALM HIDDEN ACTIONS protocol as the hidden menu. This provides access to all
of the generic List Manager actions for negotiating the list. You can set the hidden menu to your
own hidden menu, if you wish.

3.4.3 Columnar Arrangement of Menu Items
If the number of columns desired for your menu items is more than one and if you want to place
each action in a particular column, you should use a SEQUENCE numbering scheme for the
items in the menu.
List Manager displays your menu items in the minimum number of rows possible, given the
number of items and the number of columns you have specified. It will place items in sequence
as follows:

1 4 7
2 5 8
3 6 9

Knowing how List Manager places items, you can use sequencing to control in which column an
item is placed.
If the number of items to appear in each column is not equal then you must add “blank” items
and place the blank protocol in the appropriate column as described above.
A “blank” protocol is an action protocol with the ITEM TEXT and ENTRY ACTION fields left
blank.

3.4.4 Sub-Menus
If you use a sub-menu, then the HEADER field` of the (top menu) should contain a W “”.

ListMan 1.0 19 June 2023
Developer’s Guide

3.4.5 Overriding the Default Action
The List Manager automatically provides a default action of “Next Screen” or “Quit”. However,
you can override this default action by setting the XQORM(“B”) variable as part of the ENTRY
ACTION code for a PROTOCOL menu.

3.5 Fine Tune Your Application
A number of ways that you can fine-tune a basic List Manager application are discussed in the
following sections:

• Entry Selection and Light Bar Scrolling

• Setting Video Attributes in Your List Line

• Updating Items in the List

• When the User Is In Scrolling Mode (not Screen Mode)

• Scroll-Locking Columns

• Browsing Word-Processing Fields

• Long Lists

• Calling List Manager and Other Programs from Actions

3.5.1 Entry Selection and Light Bar Scrolling
List Manager does not support a scrolling “light bar” for entry selection. When the user presses
the up and down arrow keys, there is not a way to hook those key presses to a scrolling light bar
in the list of entries.
For entry selection, the best method is to make sure that in the text of each line, the line number
is shown (preferably on the left hand side of the line). Then, you can make your own call using
^DIR, or use the EN^VALM2 generic selector, to let your users choose entries. If you want to
select an entry and perform an action all at once, you can do this. Another style is to have one
action that selects entries. You can then use SELECT^VALM10 to highlight that line of the
array. This is useful if there are multiple actions a user can perform on a selected entry or entries.
You can let the user select the entries, highlight them, and then have the user perform actions on
the set of highlighted entries.

3.5.2 Setting Video Attributes in Your List Line
One enhancement you can make to your list application is setting and changing the video
attributes in your list lines.
Before you load your list, for example, you can set what the video attributes (highlight, reverse
video, underline, or blinking) should be for any given caption field in a line. Do this in the List
Template, by editing the Default Video Attributes for your captions. Then, when you build your
array list initially, you can activate these List Template attributes for each line by making calls to
FLDCTRL^VALM10.

ListMan 1.0 20 June 2023
Developer’s Guide

Once your list is already up and displayed, you can still change the video attributes of your lines.
To change video attribute based on screen position, use CNTRL^VALM10. You can save
(SAVE^VALM10) and restore (RESTORE^VALM10) a line’s video attributes.
You can also select a line using SELECT^VALM10.

3.5.3 Updating Items in the List
Another enhancement you can make to your list application is actively updating the lines in your
list. While you cannot add lines to the list, you can change the contents of existing lines. This is
useful, particularly if in your actions you are editing file entries, whose contents correspond to
what is displayed in your list.
When a user updates an entry, you can update the corresponding list array line with a call to
FLDTEXT^VALM10, and then re-paint the line on the display with a call to WRITE^VALM10.
You can also insert text into an existing line based on caption position, using
FLDTEXT^VALM10.

3.5.4 When the User Is In Scrolling Mode (Not Screen Mode)
The VALMCC variable is always available to indicate the user’s screen mode in List Manager:

• 1—Screen Mode

• 0—Scrolling Mode

If the user is signed on to the system using a terminal type that does not support the cursor
control fields needed by the List Manager, List Manager automatically defaults to Scrolling
Mode. This means that the list array and headers will always be totally re-painted to the screen
after each action.
There may be times that the application code needs to know if the job is in Scrolling Mode. For
example, if only one field in one entry is to be changed as a result of an action and the user was
working totally in the “Action Area” of the screen, then the code could simply use the
appropriate call to update just that field and set the VALMBCK variable to NULL. However, if
the user is in Scrolling Mode, then you would not update the screen and would set the
VALMBCK variable to “R”.

3.5.5 Scroll-Locking Columns
If your list display is going to be more than fits on a user’s screen (greater than 80 or 132
columns), you can set a Scroll Lock, so that to the left of the Scroll Lock, no scrolling occurs.
This feature is based on caption fields (another good reason to set up your lines using caption
fields). You can only set one caption field as the point at which no scrolling occurs. That field,
and everything to the left of it, is stationary when the user scrolls the rest of the list to the right.

ListMan 1.0 21 June 2023
Developer’s Guide

3.5.6 Browsing Word-Processing Fields
It is easy to browse word-processing fields using List Manager. Set the TYPE of your template
to DISPLAY. This provides a menu of standard actions (line up, line down, etc.). Then, for the
array, simply set the ARRAY NAME field to the global location of your word-processing field.
List Manager expects the array to be in the format of a word-processing field, so at that point you
are done.
You can also launch the VA FileMan Browser from within List Manager to browse a word-
processing field or global array. As different mix of features is offered when browsing word-
processing fields with the VA FileMan browser.

3.5.7 Long Lists
You should not use List Manager to display very long lists of entries. Although there is no limit
other than that of system resources on the size of a list, you may find that users have difficulty if
there are more than, for example, 10 screens in the list. The exact limit on the number of screens
can depend on the type of information in the list, and how willing your user is to go through such
a list. At some point, performance also becomes a consideration, especially if you are building
your list array.

3.5.8 Calling List Manager and Other Programs from Actions
From an action in your List Manager application, you can call List Manager again. It is re-
entrant. You can also call other applications, for example ScreenMan, the VA FileMan Browser.
You do not need to NEW any variables when calling these applications.

3.6 Export Your List Manager Application
Kernel 8.0’s Kernel Installation and Distribution System (KIDS) made List Manager templates
and protocols standard package components. This enables List Manager applications to be
distributed just like any other package, using KIDS.
To export your List Manager application, you need to export your application’s protocols and
your application’s List Template, as well as routines, options, and any other supporting
components.

 REF: For more information on KIDS, see the Kernel 8.0 and Kernel Toolkit 7.3 Systems
Management Guide and Kernel 8.0 and Kernel Toolkit 7.3 Developer’s Guide.

ListMan 1.0 22 June 2023
Developer’s Guide

3.6.1 Protocols
With Kernel 8.0’s Kernel Installation and Distribution System (KIDS), you can include protocols
as package components in a KIDS build. You can then export your List Manager application in a
KIDS build.

 REF: For more information on KIDS, see the Kernel 8.0 and Kernel Toolkit 7.3 Systems
Management Guide and Kernel 8.0 and Kernel Toolkit 7.3 Developer’s Guide.

Prior to Kernel 8.0, in order to export protocols, you would have needed to use the ORVOM
tool.

 REF: For more information of the ORVOM process, see the Order Entry/Results
Reporting Developer’s Guide.

3.6.2 List Templates
With Kernel 8.0’s Kernel Installation and Distribution System (KIDS), and with Kernel patch
XU*8.0*2 installed, you can include List Templates as package components in a KIDS build.
You can then export your List Manager application in a KIDS build.

 REF: For more information on KIDS, see the Kernel 8.0 and Kernel Toolkit 7.3 Systems
Management Guide and Kernel 8.0 and Kernel Toolkit 7.3 Developer’s Guide.

3.6.3 Before Kernel 8.0
Prior to Kernel 8.0, in order to export List Templates, you would have needed to use the
^VALMW3 List Manager utility.

ListMan 1.0 23 June 2023
Developer’s Guide

3.7 Example Code
3.7.1 LIST TEMPLATE PROTOCOL MENU
Figure 7 is an example of a protocol menu that would be attached to a List Template that has a
TYPE of PROTOCOL.

Figure 7: Sample Protocol Menu Attached to a List Template with TYPE of PROTOCOL

NAME: SDAM MENU
ITEM TEXT: Appointment Management
TYPE: menu
PACKAGE: SCHEDULING
DESCRIPTION: This menu contains all the activities for the appointment
management option.
COLUMN WIDTH: 26
MNEMONIC WIDTH: 4

ITEM: SDAM APPT CHECK IN MNEMONIC: CI SEQUENCE: 11
ITEM: SDAM APPT UNSCHEDULED MNEMONIC: UN SEQUENCE: 12
ITEM: SDAM APPT MAKE MNEMONIC: MA SEQUENCE: 13
ITEM: SDAM APPT CANCEL MNEMONIC: CA SEQUENCE: 21
ITEM: SDAM APPT NO-SHOW MNEMONIC: NS SEQUENCE: 22
ITEM: SDAM LIST MENU MNEMONIC: AL SEQUENCE: 23
ITEM: SDAM PATIENT CHANGE MNEMONIC: PT SEQUENCE: 31
ITEM: SDAM CLINIC CHANGE MNEMONIC: CL SEQUENCE: 32
ITEM: SDAM DATE CHANGE MNEMONIC: CD SEQUENCE: 33

HEADER: D SHOW^VALM
MENU PROMPT: Select Action:

ListMan 1.0 24 June 2023
Developer’s Guide

3.7.2 PROTOCOL Menu
The PROTOCOL menu is a sub-menu of the SDAM APPOINTMENT MENU. Please note
the header (Figure 8).

Figure 8: Sample Protocol Menu

NAME: SDAM LIST MENU
ITEM TEXT: Appointment Lists
TYPE: menu
PACKAGE: SCHEDULING
COLUMN WIDTH: 40
ITEM: SDAM LIST CHECKED IN MNEMONIC: CI
ITEM: SDAM LIST NO SHOWS MNEMONIC: NS
ITEM: SDAM LIST ALL MNEMONIC: TA
ITEM: SDAM LIST NO ACTION MNEMONIC: NA
ITEM: SDAM LIST CANCELLED MNEMONIC: CA
ITEM: SDAM LIST FUTURE MNEMONIC: FU
ITEM: SDAM LIST INPATIENT MNEMONIC: IP
ITEM: SDAM LIST NON-COUNT MNEMONIC: NC

EXIT ACTION: S:'$D(VALMBCK) VALMBCK="" D EXIT^SDAM
ENTRY ACTION: S XQORM(0)="1A"
HEADER: W ""
MENU PROMPT: Select List:
MENU DEFAULT: No Action Taken

ListMan 1.0 25 June 2023
Developer’s Guide

3.7.3 PROTOCOL Action
Figure 9 is sample PROTOCOL action:

Figure 9: Sample PROTOCOL Action

NAME: SDAM LIST CANCELLED
ITEM TEXT: Cancelled
TYPE: action
PACKAGE: SCHEDULING
DESCRIPTION: This list will display all the cancelled appointments for
the date range specified.
ENTRY ACTION: S X="CANCELLED" D LIST^SDAM
 Appendix B - Sample List Template File Entries
PROTOCOL TYPE

NAME: SDAM APPT MGT
TYPE OF LIST: PROTOCOL
HIDDEN PROTOCOL MENU: VALM HIDDEN ACTIONS
LEFT MARGIN: 1
RIGHT MARGIN: 80
TOP MARGIN: 5
BOTTOM MARGIN: 14
RIGHT MARGIN: 80
OK TO TRANSPORT?: OK
USE CURSOR CONTROL: YES
ENTITY NAME: Appointment
PROTOCOL MENU: SDAM MENU
SCREEN TITLE: Appt Mgt Module
ALLOWABLE NUMBER OF ACTIONS: 1
DATE RANGE LIMIT: 999
ARRAY NAME: ^TMP("SDAM",$J)
ITEM NAME: NAME COLUMN: 9 WIDTH: 22 DISPLAY TEXT: Patient or
Clinic
ITEM NAME: DATE COLUMN: 32 WIDTH: 20 DISPLAY TEXT: Appt Date/Time
ITEM NAME: STAT COLUMN: 53 WIDTH: 22 DISPLAY TEXT: Status
ITEM NAME: APPT# COLUMN: 5 WIDTH: 3
ITEM NAME: TIME COLUMN: 75 WIDTH: 5

EXPAND CODE: D EN^SDAMEP
EXIT CODE: D FNL^SDAM
HEADER CODE: D HDR^SDAM
HELP CODE: D HLP^SDAM5
ENTRY CODE: D INIT^SDAM

ListMan 1.0 26 June 2023
Developer’s Guide

3.7.4 DISPLAY TYPE
Figure 10 is a sample DISPLAY type:

Figure 10: Sample DISPLAY Type

NAME: SDAM APPT PROFILE
TYPE OF LIST: DISPLAY
HIDDEN PROTOCOL MENU: VALM HIDDEN ACTIONS
TOP MARGIN: 5
BOTTOM MARGIN: 17
RIGHT MARGIN: 80
OK TO TRANSPORT?: OK
USE CURSOR CONTROL: YES
SCREEN TITLE: Expanded Profile
ALLOWABLE NUMBER OF ACTIONS: 2
ARRAY NAME: ^TMP("SDAMEP",$J)
EXIT CODE: D FNL^SDAMEP
HEADER CODE: D HDR^SDAMEP
HELP CODE: D HLP^SDAM5
ENTRY CODE: D INIT^SDAMEP

ListMan 1.0 27 June 2023
Developer’s Guide

3.7.5 Application Code Examples
Figure 11 is an example of List Manager application code:

Figure 11: Sample List Manager Application Codes

SDAM ;; - main code

EN ; -- main entry point
 K XQORS,VALMEVL D EN^VALM("SDAM APPT MGT")
 Q
 ;
INIT ; -- set up appt man vars and list man array and other vars
 K I,X,SDBEG,SDEND,SDB,XQORNOD,SDFN,SDCLN,DA,DR,DIE,DNM,DQ
 S DIR(0)="43,213",DIR("A")="Select Patient name or Clinic name"
 D ^DIR K DIR I $D(DIRUT) S VALMQUIT="" G INITQ
 S SDY=Y
 I SDY["DPT(" S SDAMTYP="P",SDFN=+SDY D INIT^SDAM1
 I SDY["SC(" S SDAMTYP="C",SDCLN=+SDY D INIT^SDAM3
INITQ Q
 ;
HDR ; -- screen header set up
 N X
 I SDAMTYP="P" D HDR^SDAM10
 I SDAMTYP="C" D HDR^SDAM3
 S X=$P(SDAMLIST,"^",2)
 S VALMHDR(2)=$$SETSTR^VALM1($$FDATE^VALM1(SDBEG)_" thru
"_$$FDATE^SSDEND),X,59,22)
 Q
 ;
FNL ; -- what to do upon exiting list man
 K ^TMP("SDAM",$J),^TMP("SDAMIDX",$J),^TMP("VALMIDX",$J)
 K
SDAMCNT,SDFLDD,SDACNT,VALMHCNT,SDPRD,SDFN,SDCLN,SDAMLIST,SDT,SDAT
EG,SDEND,DFN,Y,SDAMTYP,SDY,X,SDCL,Y,SDDA,VALMY
 Q

HLP ; -- help for list
 I $D(X),X'["??" D HLPS,PAUSE^VALM1 G HLPQ
 D CLEAR^VALM1
 F I=1:1 S SDX=$P($T(HELPTXT+I),";",3,99)
 Q:SDX="$END"
 D PAUSE^VALM1:SDX="$PAUSE" Q:'Y W !,$S(SDX["$PAUSE":"",1:SDX)
 W !,"Possible actions are the following:"
 D HLPS,PAUSE^VALM1 S VALMBCK="R"
HLPQ K SDX,Y Q
 ;
HLPS ; -- short help
 S X="?" D DISP^XQORM1 W ! Q
 ;
HELPTXT ; -- help text
 ;;Enter actions(s) by typing the name(s), or abbreviation(s).
 ;;
 ;;ACTION PRE-SELECTION:

ListMan 1.0 28 June 2023
Developer’s Guide

 ;; Actions may be pre-selected by separating them with ";".
 ;; .
 ;; .
 ;; .

SDAMEP ;; - expand code
EN ; Selection of appointment
 K ^TMP("SDAMEP",$J)
 S VALMBCK=""
 D SEL G ENQ:'$D(SDW)!(SDERR)
 W ! D WAIT^DICD,EN^VALM("SDAM APPT PROFILE")
 S VALMBCK="R"
ENQ Q

VALMD ;List Manager Sample Routine; APR 2, 1992
 ;
EN ; -- option entry point
 K XQORS,VALMEVL
 D EN^VALM("VALM DEMO APPLICATION")
ENQ Q
 ;
 ;
INIT ; -- build array
 W ! S DIC("A")="Select Package:",DIC="^DIC(9.4,",DIC(0)="AEMQ" D
^DIC K DIC
 I Y<0 S VALMQUIT="" G INITQ
PKG ; -- entry pt if package known
 N VALMX,VALMCNTI,VALMPRO,VALMIFN,X,VALMPRE,Z
 S VALMPKG=+Y
 D CLEAN^VALM10
 S
(VALMCNTI,VALMCNT)=0,(VALMPRE,VALMPRO)=$P($G(^DIC(9.4,VALMPKG,0)),U,2)
 F S VALMPRO=$O(^ORD(101,"B",VALMPRO))
 Q:$E(VALMPRO,1,$L(VALMPRE))'=VALMPRE
 S VALMIFN=0 F S VALMIFN=$O(^ORD(101,"B",VALMPRO,VALMIFN))
Q:'VALMIFN I $D(^ORD(101,VALMIFN,0)) S VALMX=^(0) D
 .S VALMCNTI=VALMCNTI+1 W:(VALMCNTI#10)=0 "."
 .S X=$$SETFLD^VALM1(VALMCNTI,"","NUMBER")
 .S X=$$SETFLD^VALM1($P(VALMX,U),X,"NAME")
 .S X=$$SETFLD^VALM1($P(VALMX,U,2),X,"TEXT") K Z S
$P(Z,$E(VALMCNTI),240)=""
 .S VALMCNT=VALMCNT+1
 .D SET^VALM10(VALMCNT,$E(X_Z,1,240),VALMCNTI) ; set text
 .S ^TMP("VALMZIDX",$J,VALMCNTI)=VALMCNT_U_VALMIFN
 .D:'(VALMCNT#9) FLDCTRL^VALM10(VALMCNT) ; defaults for all fields
 .D FLDCTRL^VALM10(VALMCNT,"NUMBER") ; default for 1 field
 .D:'(VALMCNT#5) FLDCTRL^VALM10(VALMCNT,"NAME",IOUON,IOUOFF) ;
adhoc
 D NUL:'VALMCNT
INITQ Q
 ;
HDR ; -- demo header
 N VALMX
 S VALMX=$G(^DIC(9.4,VALMPKG,0)),X=" Package:"_$P(VALMX,U)
 S VALMHDR(1)=$$SETSTR^VALM1("Prefix:"_$P(VALMX,U,2),X,63,15)
 S VALMHDR(2)="Description: "_$E($P(VALMX,U,3),1,65)

ListMan 1.0 29 June 2023
Developer’s Guide

 Q
 ;
NUL ; -- set null message
 I 'VALMCNT D
 .F X=" "," No protocols to list." S VALMCNT=VALMCNT+1 D
SET^VALM10(VALMCNT,X)
 .S ^TMP("VALMZIDX",$J,1)=1,^(2)=2
 Q
 ;
FNL ; -- clean up
 K DIE,DIC,DR,DA,DE,DQ,VALMY,VALMPKG,^TMP("VALMZIDX",$J)
 D CLEAN^VALM10
 Q
 ;
EXP ; -- expand action
 D FULL^VALM1
 N VALMI,VALMAT,VALMY
 D EN^VALM2(XQORNOD(0),"O") S VALMI=0
 F S VALMI=$O(VALMY(VALMI)) Q:'VALMI D
 .S VALMAT=$G(^TMP("VALMZIDX",$J,VALMI))
 .W !!,@VALMAR@(+VALMAT,0),!
 .S DA=+$P(VALMAT,U,2),DIC="^ORD(101,",DR="0"
 D EN^DIQ,PAUSE^VALM1
 S VALMBCK="R"
 Q
 ;
EDIT ; -- edit action
 N VALMA,VALMP,VALMI,VALMAT,VALMY
 D EN^VALM2(XQORNOD(0),"O") S VALMI=0 ; allow the user to
"O"ptionally answer
 F S VALMI=$O(VALMY(VALMI)) Q:'VALMI D
 .D SELECT^VALM10(VALMI,1) ; -- 'select' line
 .S VALMAT=$G(^TMP("VALMZIDX",$J,VALMI))
 .W !!,@VALMAR@(+VALMAT,0)
 .S DA=+$P(VALMAT,U,2),VALMP=$G(^ORD(101,DA,0)),DIE=19,DR="1" D
^DIE K DIE,DR
 .S VALMA=$G(^ORD(101,DA,0))
 .I $P(VALMP,U,2)'=$P(VALMA,U,2) D
UPD($P(VALMA,U,2),"TEXT",.VALMAT)
 .D SELECT^VALM10(VALMI,0) ; -- 'de-select' line
 S VALMBCK=$S(VALMCC:"",1:"R")
 Q
 ;
DESC ; -- display description action
 N VALMI,VALMY,VALMAT
 D EN^VALM2(XQORNOD(0),"OS") S VALMI=0 ; select only a "S"ingle
protocols
 F S VALMI=$O(VALMY(VALMI)) Q:'VALMI D
 .S VALMAT=+$P($G(^TMP("VALMZIDX",$J,VALMI)),U,2)
 .I '$D(^ORD(101,VALMAT,1)) W !!,"No Description entered." D
AUSE^VALM1 Q
 .D WP^VALM("^ORD(101,"_VALMAT_",1)",$P($G(^ORD(101,VALMAT,0)),U))
 S VALMBCK="R"
 Q
 ;
UPD(TEXT,FLD,VALMAT) ; -- update data for screen
 D:VALMCC FLDCTRL^VALM10(+VALMAT,.FLD,.IOINHI,.IOINORM,1)

ListMan 1.0 30 June 2023
Developer’s Guide

 D FLDTEXT^VALM10(+VALMAT,.FLD,.TEXT)
 Q
 ;
CHG ; -- change package action
 K X I $D(XQORNOD(0)) S X=$P($P(XQORNOD(0),U,4),"=",2)
 I X="" R !!,"Select Package: ",X:DTIME
 S DIC="^DIC(9.4,",DIC(0)="EMQ" D ^DIC K DIC G CHG:X["?"
 I Y<0 D G CHGQ
 .W !!,*7,"Package has not been changed."
 .W ! S DIR(0)="E" D ^DIR K DIR
 .S VALMBCK=""
 D PKG,HDR S VALMBCK="R" S VALMBG=1
CHGQ Q

Figure 12 is an example of a stub routine created when adding a new List Template using the
Workbench.

Figure 12: Sample Stub Routines When Adding New List Templates with the Workbench

ZZDEMO ;; 24-JAN-1993
 ;; ;
EN ; -- main entry point for DOCUMENTATION DEMO
 D EN^VALM("DOCUMENTATION DEMO")
 Q
 ;
HDR ; -- header code
 S VALMHDR(1)="This is a test header for DOCUMENTATION DEMO."
 S VALMHDR(2)="This is the second line"
 Q
 ;
INIT ; -- init variables and list array
 F LINE=1:1:30 D SET^VALM10(LINE,LINE_" Line number"_LINE)
 S VALMCNT=30
 Q
 ;
HELP ; -- help code
 S X="?" D DISP^XQORM1 W !!
 Q
 ;
EXIT ; -- exit code
 Q
 ;
EXPND ; -- expand code
 Q
 ;

ListMan 1.0 31 June 2023
Developer’s Guide

4 List Template Reference
4.1 Fields
4.1.1 Demographics Fields
The following fields are demographic fields:

• NAME (#.01)

• ENTITY NAME (#.09)

• SCREEN TITLE (#.11)

4.1.1.1 NAME (#.01)
Name of the List Template. The template should be namespaced.

4.1.1.2 ENTITY NAME (#.09) [Optional]
This field contains the term that is displayed to the user that best describes the items in the list.
This field is used by the select entry point (EN^VALM2).

4.1.1.3 SCREEN TITLE (#.11) [Optional but Recommended] Screen Title Field
This field contains the text that is displayed/printed in the upper, left-hand corner of the screen
display.
The screen title can be changed at run time by setting the VALM(“TITLE”) variable during
ENTRY CODE or action processing. If you have one basic List Template definition that could
be used for more than one application, then setting the VALM(“TITLE”) variable allows you to
re-use the template but change the title as it appears to the user.

4.1.2 Protocol Information Fields
The following fields are protocol information fields:

• TYPE OF LIST (#.02)

• PROTOCOL MENU (#.1)

• PRINT PROTOCOL (#1.01)

• HIDDEN MENU (#1.02)

4.1.2.1 TYPE OF LIST (#.02)
Indicates the type of List Template. The type determines what actions are presented to the user:

• PROTOCOL—Uses the menu protocol specified in the PROTOCOL MENU field.

• DISPLAY—Uses the standard VALM DISPLAY PROTOCOL supplied by the List
Manager.

ListMan 1.0 32 June 2023
Developer’s Guide

4.1.2.2 PROTOCOL MENU (#.1)
This field contains the name of the protocol menu that is used by the List Manager if the TYPE
OF LIST (#.02) fields is “PROTOCOL”. This field is not used for “DISPLAY” types.

4.1.2.3 PRINT PROTOCOL (#1.01) [Optional]
This field contains the name of the protocol that is called when the user selects the generic Print
List action. Normally, this field is blank, and the generic printing action is sufficient.

4.1.2.4 HIDDEN MENU (#1.02) [Optional but Recommended]
This field contains the name of the protocol menu that the List Manager uses for the “hidden”
actions available to the user. Normally, the application enters the VALM HIDDEN ACTIONS
menu in this field. However, there may be applications that would require a different set of
“hidden” actions.
If the List Template has a “hidden” menu defined the List Manager automatically displays help
for the hidden menu when the user enters “??”.

4.1.3 List Region Fields
The following fields are list region fields:

• TOP MARGIN (#.05)

• BOTTOM MARGIN (#.06)

• RIGHT MARGIN (#.04)

4.1.3.1 TOP MARGIN (#.05)
This field contains the number of the top row of the scrolling region where the list is displayed.

4.1.3.2 BOTTOM MARGIN (#.06)
This field contains the number of the bottom row of the scrolling region where the list is
displayed.

4.1.3.3 RIGHT MARGIN (#.04) [Optional]
This field indicates the maximum number of characters a row can contain. If this parameter is
not set, 80 is used as the default. Range is 80 to 240 characters.

ListMan 1.0 33 June 2023
Developer’s Guide

4.1.4 Other Fields
The following are other fields:

• OK TO TRANSPORT ? (#.07)

• USE CURSOR CONTROL (#.08)

• ALLOWABLE NUMBER OF ACTIONS (#.12)

• DATE RANGE LIMIT (#.13)

• AUTOMATIC DEFAULTS (#.14)

4.1.4.1 OK TO TRANSPORT ? (#.07)
This field indicates to the transport utility if this List Template should be distributed.

 NOTE: This field is obsolete now that KIDS is used to transport List Manager
applications.

REF: For more information on KIDS, see the Kernel 8.0 and Kernel Toolkit 7.3 Systems
Management Guide and Kernel 8.0 and Kernel Toolkit 7.3 Developer’s Guide.

4.1.4.2 USE CURSOR CONTROL (#.08)
This field indicates whether the cursor positioning and character enhancement capabilities of the
device should be used. If set to “NO”, then lists are presented in Scrolling Mode.

4.1.4.3 ALLOWABLE NUMBER OF ACTIONS (#.12)
This field indicates the number of actions a user can select at one time.
For example, if this parameter is set to 1, then the user can only enter one action:

• Allowed: Select Action: NX

• Not Allowed: Select Action: NX,EP

If this parameter is not entered, then the system defaults to 1.

4.1.4.4 DATE RANGE LIMIT (#.13) [Optional]
This field contains the maximum number of days that can be specified by the user while entering
a date range. This parameter is only used if the applications calls the List Manager’s date range
entry point (RANGE^VALM1).

ListMan 1.0 34 June 2023
Developer’s Guide

4.1.4.5 AUTOMATIC DEFAULTS (#.14) [optional]
This field indicates whether List Manager should always supply a default action at the “Select”
prompt for “PROTOCOL” type List Templates.
If set to “NO”, a default is not provided automatically. It is your responsibility to indicate a
default, if desired. This default can be indicated by setting the XQORM(“B”) variable as part of
the PROTOCOL menu’s HEADER CODE. For example:

D SHOW^VALM S XQORM("B")="Your action")

This parameter is only valid for “PROTOCOL” type List Templates.
If the parameter is set to “YES” or is blank, a default is provided by List Manager. If the current
screen contains the last line in the list, then the default will be “Quit”; otherwise, it will be "Next
Screen". However, as discussed above, you can override this default by setting the
XQORM(“B”) variable.

4.1.5 MUMPS Code Related Fields
The following are MUMPS code related fields:

• HEADER CODE (#100)

• ENTRY CODE (#106)

• EXIT CODE (#105)

• EXPAND CODE (#102)

• HELP CODE (#103)

• ARRAY NAME (#107)

4.1.5.1 HEADER CODE (#100)
This MUMPS field contains the code that the List Manager executes to create the application-
specific screen header array. This header must be stored in the VALMHDR() variable.
The subscripting for VALMHDR() is a simple integer number. For example:

S VALMHDR(1) = "This is the 1st line of the header"

S VALMHDR(2) = "This is the 2nd line of the header"

During action processing, if the header needs to be changed, you can KILL VALMHDR and
then SET VALMBCK=“R”. This causes List Manager to automatically invoke this HEADER
CODE, as part of the re-display of the screen.

ListMan 1.0 35 June 2023
Developer’s Guide

4.1.5.2 ENTRY CODE (#106)
This field contains MUMPS code that is executed when the List Manager is called. This code is
usually used by the application to initialize variables. Any application-specific variables should
also be set up here.
List Manager variables to be initialized are:

• VALMCNT [Required]—The number of lines in the list.

• VALMBG [Optional]—The number of the line you want the List Manager to start
displaying from a line other than 1. If not defined, it will be set to 1 by List Manager.

• VALMQUIT [Optional]—If during the building of the array, the software determines
that the List Manager application cannot continue, this variable should be set. Setting this
variable causes the List Manager to quit the current List Manager application.

The array specified in the ARRAY NAME field is also set up at this time. This array contains the
list of items to display. The subscripting of the array should conform to VA FileMan word-
processing format.
For example: If ARRAY NAME equals ^TMP(“SDTEST”,$J), then the list would be stored as
follows:

^TMP("SDTEST",$J,1,0) = " 1 Valmuser,One "

^TMP("SDTEST",$J,2,0) = " 2/2/93@0800am"

If you plan to use the entry selection call, EN^VALM2, then the following must also be set:

^TMP("SDTEST",$J,"IDX",<line #>,<entry #>) = ""

The “line #” corresponds to the 1 and 2 shown in the above example. The “entry #” corresponds
to an entry in your application. In the example, the two lines each correspond to appointment
entry number. So, the “IDX” nodes would be set up in the following manner:

^TMP("SDTEST",$J,"IDX",1,1)=""

^TMP("SDTEST",$J,"IDX",2,1)=""

 REF: For more information on that List Template field, see the ARRAY NAME field.

4.1.5.3 EXIT CODE (#105) [optional but recommended]
This field contains MUMPS logic that the List Manager executes when the user exits the list.
This should be used to clean up variables and any other exit processing the application needs to
perform.

ListMan 1.0 36 June 2023
Developer’s Guide

4.1.5.4 EXPAND CODE (#102) [optional]
This field contains the MUMPS code that displays a detailed inquiry-type report/screen for a
specific entry in the list. If this field is filled in, then the standard “DISPLAY” protocol has an
“EXPANDED” action.
The standard VALM EXPAND protocol uses this field to expand an entry. If the TYPE OF
LIST is PROTOCOL, then add the VALM EXPAND protocol to your custom protocol menu
and enter the code in this EXPAND CODE (#102) field.
A possible method for expand is to create another List Template that is a DISPLAY type. You
need only build the display array and set this EXPAND CODE (#102) field to be another call to
the List Manager, passing in the display template name.

4.1.5.5 HELP CODE (#103) [optional]
This field contains the MUMPS code for custom application help. This code is executed when
the user types a “?” at the “Select Action: ” prompt.
This field is optional. If this field is left blank, the normal help given by the XQOR* driver takes
effect.
If the List Template has a “hidden” menu defined the List Manager automatically displays help
for the hidden menu when the user enters “??”.

4.1.5.6 ARRAY NAME (#107) [optional]
This field contains the name of the array that holds the list of items to be displayed. The code
specified in the ENTRY CODE (#106) field must create this array initially.

 NOTE: The array name must be preceded by a space character. This is needed to allow
global specification. VA FileMan does not allow “^” as the first character. The array can
be either a local or global variable.

The array needs to follow the format used in word-processing fields
(e.g., ^TMP(“SDAM”,$J,line #,0)=string).
Finally, you do not have to indicate the array in which the list will be located. By making calls to
SET^VALM10, you can have the List Manager decide where to store the list array. If you need
to reference lines in the array, the use of the @VALMAR@(<line #>,0) syntax is supported.
This feature is ideal for a short list of items(e.g., <10 items).

ListMan 1.0 37 June 2023
Developer’s Guide

4.1.6 Caption Line Information Fields
The following are caption line information fields:

• CAPTION LINE COLUMNS (#200)

• ITEM NAME (#.01)

• COLUMN (#.02)

• WIDTH (#.03)

• DISPLAY TEXT (#.04)

• DEFAULT VIDEO ATTRIBUTES (#.05)

• SCROLL LOCK (#.06)

4.1.6.1 CAPTION LINE COLUMNS (#200) [Optional]
This Multiple field contains column definitions for the data displayed in the list. Adding entries
to this Multiple is optional. The column parameters are used when the List Manager writes the
line indicating the top of the list’s scrolling region.

4.1.6.2 ITEM NAME (#.01)
This field contains the reference name of the column. The DISPLAY TEXT field contains the
text that is used when the caption line is written. The text in this field is used when the
application refers to this column during programming.

4.1.6.3 COLUMN (#.02)
This field contains the column number where the data/caption starts.

4.1.6.4 WIDTH (#.03)
This field contains the number of characters this field uses.

4.1.6.5 DISPLAY TEXT (#.04) [optional]
This field contains the text that appears on the caption line for this column/field. If the text is
longer than the WIDTH parameter, it is truncated to the WIDTH specification when written as
part of the caption line. This field is optional and can be left blank.

ListMan 1.0 38 June 2023
Developer’s Guide

4.1.6.6 DEFAULT VIDEO ATTRIBUTES (#.05) [optional]
This parameter allows you to indicate the default video attributes that should be applied when
program calls are made to the FLDCTRL^VALM10 entry point.
The following is the list of attributes and abbreviations used for this parameter:

• H—Highlight

• R—Reverse video

• U—Underline

• B—Blinking

4.1.6.7 SCROLL LOCK (#.06) [Optional]
If you want to lock one for more columns into place as the user scrolls horizontally through the
list, you can place a “Scroll Lock” on the right most column field that should be locked in place
on the screen. Only one column can have this “Scroll Lock” parameter set to “YES”. If you
attempt to set more than one, the system does not allow it and issues a warning.
If this parameter is set to “YES”, this caption field and any other caption field, with a COLUMN
parameter set to less than this current caption fields, the List Manage always displays it.
This parameter does not need to be filled in for List Templates with a RIGHT MARGIN of 80.
For those templates with a RIGHT MARGIN of over 80, this field also does not need to be
entered. However, the use of this field allows you to indicate the list’s identification fields for
user readability.
Only one caption field can have this parameter set to “YES”.
The local array VALMDDF() is available to you at run time. This array is subscripted by the
column field’s name and contains information described above:

VALMDDF(<column name>)=<column name> ^ <column> ^ <width> ^ <caption> ^
<video> ^ <scroll lock>

ListMan 1.0 39 June 2023
Developer’s Guide

5 Application Programming Interfaces (APIs)
5.1 List Manager Variables
This section lists all of the variables within List Manager that you can either set or refer to in
your List Manager application code.

Table 10: List Manager Variables

Variable Description
VALM(TITLE) The screen title can be changed at run time by setting this variable,

during ENTRY CODE or action processing. If you are one basic List
Template definition that could be used for more than one application,
then setting VALM("TITLE") allows you to re-use the template but
change the title as it appears to the user.

VALMBCK When returning to the List Manager from a protocol action, you should
set the VALMBCK variable. This tells List Manager what to do when
returning from an action. If not defined after an action, List Manager
acts as if it was set to "Q":

• R—Refresh screen.
• NULL—Clear bottom portion of screen and prompt for action.
• Q—Exit (Quit) List Manager.

VALMBG An optional variable you can set in the INIT code that sets up your list.
This tells List Manager what line in your list to start displaying the list
in (default is line 1).

In action protocols, you can also refer to the value of this variable to
find the number of the first list line currently displayed on the user’s
screen.

VALMCC Always available to indicate the user’s screen mode:
• 1—Screen Mode.
• 0—Scrolling Mode.

VALMCNT The number of the lines in the list. In the INIT code that sets up the
list, you must set VALMCNT equal to the number of lines in your list.

VALMDDF() This array is available at runtime. It is subscripted by caption field
name, so there is one node per caption field in your List Template.
Each node contains the following ^-pieces:

• Caption field name
• Column
• Width

ListMan 1.0 40 June 2023
Developer’s Guide

Variable Description
• Caption
• Video (if defined)
• Scroll Lock (if defined)

For example:

VALMDDF("INIT")=INIT^37^5^Init.
VALMDDF("NAME")=NAME^1^35^ Name^

VALMHDR() The header is stored in VALMHDR(). The subscripting for
VALMHDR() is a simple integer number. For example:

S VALMHDR(1) = "1st line of header"
S VALMHDR(2) = "2nd line of header"

During action processing, if the header needs to be changed, you can
KILL VALMHDR and then SET VALMBCK="R". This causes List
Manager to automatically invoke what is called by the HEADER
CODE (#100) field as part of the re-display of the screen.

VALMLST In action protocols, you can refer to the value of this variable to find
the number of the last list line currently displayed on the user’s
screen.

VALMQUIT If in the INIT code, while building a list, you decide that List Manager
should not continue, set the VALMQUIT variable to tell List Manager
to Quit.

VALMSG To display a custom message in the message window after
completing an action, set this variable with the desired text (up to 50
characters).

@VALMAR@(#,0) If you built your array using SET^VALM10, you can use the
@VALMAR@(line#,0) syntax to reference text lines in the array.

@VALMAR@("IDX") Location of entry index when you set up an array using
SET^VALM10, and pass index entries with each line. The relationship
of the list line to the indexed value stored in the global referenced by
@VALMAR@("IDX") is:

^..."IDX",line_num,index_num)=""

To retrieve the entry number indexed for line 54 in the array, you
could use:

ListMan 1.0 41 June 2023
Developer’s Guide

Variable Description
S Y=$O(@VALMAR@("IDX",56,""))

XQORM("B") List Manager automatically provides a default action of “Next Screen”
or “Quit”. However, you can override this default action by setting
XQORM("B") as part of the ENTRY ACTION code for a PROTOCOL
menu. Set it to the text of the menu item you would like to be the new
default.

5.2 Kernel Video Variables
Table 11 lists the standard video control variables that you can use in List Manager:

Table 11: Kernel Video Variables

Attribute Variable
Normal Video IOINORM

High Intensity IOINHI
Reverse Video On IORVON

Reverse Video Off IORVOFF
Underline On IOUON

Underline Off IOUOFF
Blink On IOBON

Blink Off IOBOFF

These variables can be used in ON and OFF parameters outlined in a number of List Manager
calls. If other video attributes are needed, you need to make the appropriate call to Kernel’s
ENDR^%ZISS entry point to set up variables for those attributes.
The variables listed in Table 11 should always remain defined and should not be KILLed by
application code.
Finally, you can specify more than one video attribute in a single call by concatenating the
variables. For example, “D CNTRL^VALM10(1,20,30,IOINHI_IOUON,IOINORM)” would
highlight and underline 30 characters starting at Column 20.

ListMan 1.0 42 June 2023
Developer’s Guide

5.3 List Manager Generic Action Protocols
Table 12 lists the generic actions in the PROTOCOL (#101) file that you can use in your List
Manager application.

 NOTE: These generic actions are all attached to the VALM HIDDEN ACTIONS
protocol. This is so that you can set your list’s HIDDEN MENU protocol to VALM
HIDDEN ACTIONS and have your list automatically make all of these actions available
to your list users.

Table 12: List Manager Generic Action Protocols

Protocol Name Protocol Description

VALM DOWN A LINE Move down a line.

VALM UP ONE LINE Move up a line.

VALM FIRST SCREEN This action will display the first screen.

VALM LAST SCREEN The action will display the last items.

VALM NEXT SCREEN This action will allow the user to view the next screen of
entries, if any exist.

VALM PREVIOUS SCREEN This action will allow the user to view the previous screen of
entries, if any exist.

VALM PRINT LIST This action allows the user to print the entire list of entries
currently being displayed.

VALM PRINT SCREEN This action allows the user to print the current List Manager
display screen. The header and the current portion of the
list are printed.

VALM REFRESH This actions allows the user to re-display the current screen.

VALM SEARCH LIST Finds text in list of entries.

VALM TURN ON/OFF MENUS This toggles the menu of actions to be displayed/not
displayed automatically.

VALM GOTO PAGE This protocol will allow the user to move to any page in the
list.

VALM RIGHT This protocol allows the user to move the screen to the
right if the List Template is set up for a width of more than
80 characters.

VALM LEFT This protocol allows the user to move the screen to the left
if the List Template is set up for a width of more than 80
characters.

VALM QUIT This protocol can be used as a generic “Quit” action.

ListMan 1.0 43 June 2023
Developer’s Guide

Protocol Name Protocol Description
VALM HIDDEN ACTIONS This menu protocol contains all the above action protocols.

You usually would specify this protocol as the “Hidden
Menu” protocol in the List Template set up.
The Workbench automatically designates this protocol as
the “Hidden Menu” protocol when a List Template is initially
created.

5.4 General APIs

5.4.1 EN^VALM(): Load a ListMan Template/Application
Reference Type: Supported
Category: ListMan
ICR #: 10118
Description: This API invokes ListMan to load a List Manager template/application.
Format: EN^VALM(template_name)

Input Parameters: template_name: (required) This parameter contains the name of a
ListMan template/application to load.

Output: None.

5.4.2 SHOW^VALM: Display Menu to User
Reference Type: Supported
Category: ListMan
ICR #: 10118
Description: Call the SHOW^VALM API in the HEADER CODE (#100) field of all of

your menu protocols. This displays the menu to the user.
Format: SHOW^VALM

Input Parameters: None.
Output: None.

ListMan 1.0 44 June 2023
Developer’s Guide

5.4.3 PAUSE^VALM1: Pause the Screen
Reference Type: Supported
Category: ListMan
ICR #: 10116
Description: This API pauses the screen. The call uses a ^DIR API with DIR(0) set to

“E” for end of page. The prompt looks like:
Press RETURN to continue or '^' to exit:

Format: PAUSE^VALM1

Input Parameters: None.
Output: None.

5.4.4 RANGE^VALM1: Change Date Range
Reference Type: Supported
Category: ListMan
ICR #: 10116
Description: This API lets the user change a date range.
Format: RANGE^VALM1

Input Variables: DATE RANGE LIMIT Field: (required) Value as stored in the LIST
TEMPLATE (#409.61) file.

 VALMB: (optional) Default beginning date.

Output Variables: VALMBEG: Beginning date in VA FileMan (FM) date format.
 VALMEND: Ending date in FM date format.

5.4.5 EN^VALM2(): Generic Selector
Reference Type: Supported
Category: ListMan
ICR #: 10119
Description: This API is a generic selector that can be used within an action call.

In order to use this API, the List Manager ENTRY CODE (#106) field
must be set up the @VALMAR@(“IDX”) index array. This is done by

ListMan 1.0 45 June 2023
Developer’s Guide

setting up the list array line-by-line with the SET^VALM10 entry point
and associating an IEN (Internal Entry Number) with each line created.

Format: EN^VALM2(valmnod,options)

Input Parameters: valmnod: (required) String in XQORNOD(0) four-piece
format:

1. IEN of selected item.
2. IEN of menu.
3. Menu text.
4. Text user entered to select item.

For example:

S VALMNOD="3^1312^Misc. Consult^3"

 options: (required) Selection option flags:

• S—User must select one and only one
number as an entry. The user cannot press the
Enter key without entering a number;
however, the user can enter a caret (^) to
QUIT the select and exit the API.

• SO—User can select one number or no
number, since the selection is optional (“O”).
For example: if the option is “SO”, then the
user is not required to select one number. The
user can press the Enter key without a number
or enter a caret (^) to QUIT the select and exit
the API.

• L (default)—User can select numbers in a
range, comma-listed, or a combination of
both. For example: 1-10,15,20-30. The user
cannot press the Enter key without entering a
number range or list; however, the user can
enter a caret (^) to QUIT the select and exit
the API.

• LO—User can select a number range, number
list, combination, or no number, since the
selection is optional (“O”). For example: if the
option is “LO”, then the user is not required to
select any numbers. The user can press the
Enter key without a number or enter a caret
(^) to QUIT the select and exit the API.

ListMan 1.0 46 June 2023
Developer’s Guide

Output: VALMY(): Array with selected entries as subscripts.

5.4.5.1 Examples
These examples use a modified test version of the EN^VALM2 API to only test the option input
parameter choices.

5.4.5.1.1 Option “S” Example

Figure 13: EN^ZZVALM2T API—Option “S” Example: System Prompts and User Entries

>D EN^ZZVALM2T("S")

Select Item: (1-200): <Enter>

This is a required response. Enter '^' to exit

Select Item: (1-200): 1-5

This response must be a number.

Select Item: (1-200): 1,5

This response must be a number.

Select Item: (1-200): 5

Selected Item(s) Output:

VALMY(5)=""

With the “S” parameter, the user cannot simply press the Enter key without entering a
single number.

With the “S” parameter, the user can only enter a single number (no range of entries).

With the “S” parameter, the user can only enter a single number (no list of entries).

ListMan 1.0 47 June 2023
Developer’s Guide

5.4.5.1.2 Option “SO” Quit Examples

Figure 14: EN^ZZVALM2T API—Option “SO” Example: System Prompts and User Entries

>D EN^ZZVALM2T("SO")

Select Item: (1-200): <Enter>

Selected Item(s) Output:

>

>D EN^ZZVALM2T("SO")

Select Item: (1-200): ^

Selected Item(s) Output:

>

5.4.5.1.3 Option “L” Example

Figure 15: EN^ZZVALM2T API—Option “L” Example: System Prompts and User Entries

>D EN^ZZVALM2T("L")

Select Item: (1-200): <Enter>

This is a required response. Enter '^' to exit

Select Item(s): (1-200): 1-5,150,199-200
Selected Item(s) Output:
VALMY(1)=""
VALMY(2)=""
VALMY(3)=""
VALMY(4)=""
VALMY(5)=""
VALMY(150)=""
VALMY(199)=""
VALMY(200)=""

With the “SO” parameter, the user can simply press the Enter key and Quit the API
without error, which is unlike with the “S” only parameter (Figure 13).

With the “L” parameter, the user cannot simply press the Enter key without entering a
range or list of numbers.

ListMan 1.0 48 June 2023
Developer’s Guide

5.4.5.1.4 Option “LO” Quit Examples

Figure 16: EN^ZZVALM2T API—Option “LO” Quit Example: System Prompts and User Entries

>D EN^ZZVALM2T("LO")

Select Item(s): (1-200): <Enter>
Selected Item(s) Output:

>

>D EN^ZZVALM2T("LO")

Select Item(s): (1-200): ^
Selected Item(s) Output:

>

5.5 List Line Text APIs

5.5.1 FLDUPD^VALM1(): Update Caption Field
Reference Type: Supported
Category: ListMan
ICR #: 10116
Description: This API updates a specific caption field of a specified list line on the

display screen. The field name must match a field defined in the
CAPTION LINE COLUMNS (#200) Multiple field in the LIST
TEMPLATE (#409.61) file.

Format: FLDUPD^VALM1(text,field,entry)

Input Parameters: text: (required) Text to insert.
 field: (required) Caption field name.
 entry: (required) Line number of line in the list.

Output: None.

With the “LO” parameter, the user can simply press the Enter key and Quit the API
without error, which is unlike with the “L” only parameter (Figure 15).

ListMan 1.0 49 June 2023
Developer’s Guide

5.5.2 $$SETFLD^VALM1(): Insert Text in a String
Reference Type: Supported
Category: ListMan
ICR #: 10116
Description: This extrinsic function inserts text in a string based on the column position

of Caption fields stored in the current List Template. Typically, this is
used when you are building the lines to place in your list’s array. It helps
you easily place text strings in your list lines based on the position of
caption headers in the active List Template. For example, if your List
Template has three captions, you would typically make three calls to this
function to construct your line – one call each to insert the text
corresponding to each caption header.

Format: S X=$$SETFLD^VALM1(text,string,field)

Input Parameters: text: (required) Text to insert.
 string: (required) String into which text is to be inserted.
 field: (required) Caption field name in list template whose

column position determines the position in string to
insert text.

Output: return value: Returns string with text inserted.

5.5.3 $$SETSTR^VALM1(): Set Up String for Display
Reference Type: Supported
Category: ListMan
ICR #: 10116
Description: This extrinsic function sets up a string for display. Once the string has

been set up for display, you would typically set it in the ARRAY NAME
(#107) field specified in the List Template. For example:

S ^TMP("SDAM",$J,SDLN)=X

Format: S X=$$SETSTR^VALM1(text,string,column,length)

ListMan 1.0 50 June 2023
Developer’s Guide

Input Parameters: text: (required) Text to insert.
 string: (required) String into which text is to be inserted.
 column: (required) Column position to insert text.
 length: (required) Number of characters to clear.

Output: return value: Returns string with text inserted.

5.5.3.1 Examples

>S X=$$SETSTR^VALM1("This","",10,4) W !,X
This

>S X=$$SETSTR^VALM1("is",X,20,2) W !,X
This is

>S X=$$SETSTR^VALM1("an",X,30,2) W !,X
This is an

>S X=$$SETSTR^VALM1("example.",X,40,8) W !,X
This is an example.

5.5.4 FLDTEXT^VALM10(): Inserts Text in a Column
Reference Type: Supported
Category: ListMan
ICR #: 10117
Description: This API inserts text at the column where the specific field starts in a

LINE in the list array.
The FIELD name must match a field defined in the CAPTION LINE
COLUMNS (#200) Multiple field of the LIST TEMPLATE (#409.61) file.

Format: FLDTEXT^VALM10(line,field,text)

Input Parameters: line: (required) Line number in list array into which you
insert text.

 field: (required) Name of a caption field in the List
Template. Text is inserted at the column position
corresponding to the specified caption field.

 text: (required) Text to insert.

ListMan 1.0 51 June 2023
Developer’s Guide

Output: None.

5.5.5 SET^VALM10(): Construct Initial List Array
Reference Type: Supported
Category: ListMan
ICR #: 10117
Description: This API constructs the initial list array before displaying the list to the

user. It adds one line at a time to the list array.

 NOTE: If the List Template does not define an ARRAY NAME
(#107), then you must use this call to build lines in the list array.

Format: SET^VALM10(line,string[,ien])

Input Parameters: line: (required) Line number in the array to set line. The
list array, when completed, must start at line number
1, and there cannot be any gaps in the line numbering
sequence.

 string: (required) Text of the line.
 ien: (optional) Entry number to associate with the line. If

passed, then the line is also indexed for use by the
EN^VALM2 generic list selection call.

Output: None.

5.6 List Line Video APIs

5.6.1 CNTRL^VALM10(): Set Video Attributes
Reference Type: Supported
Category: ListMan
ICR #: 10117
Description: This API sets the video attributes for a line in the current list.
Format: CNTRL^VALM10(line,column,width,on,off[,save])

ListMan 1.0 52 June 2023
Developer’s Guide

Input Parameters: line: (required) Line number of line for which you want to
set video attributes.

 column: (required) Screen column position where code should
be invoked.

 width: (required) How many screen columns for which the
code should be in effect.

 on: (required) Beginning control sequence.

 REF: For a set of variables you can use with
this input parameter, see the “Kernel Video
Variables” section.

 off: (required) Ending control sequence.

 REF: For a set of variables you can use with
this input parameter, see the “Kernel Video
Variables” section.

 save: (optional) Possible values:

• 1—Save control sequence for later use (to be
restored with RESTORE^VALM10).

• 0

Output: None.

5.6.2 FLDCTRL^VALM10(): Activate Video Control Sequences
Reference Type: Supported
Category: ListMan
ICR #: 10117
Description: This API activates the appropriate video control sequences for a LINE in

the list array based on the DEFAULT VIDEO ATTRIBUTES (#.05) field
in the CAPTION LINE definition for the template.

Format: FLDCTRL^VALM10(line[,field][,on][,off][,save])

ListMan 1.0 53 June 2023
Developer’s Guide

Input Parameters: line: (required) Line number in the list array for which you
want to activate video attributes.

 field: (optional) If passed, only the video attributes defined
for text that falls within the specified caption field are
activated. It must be the name of a caption field in the
List Template.

 on: (optional) If defined, then the code in this variable is
used at the starting column position to turn on video
attributes instead of the default.

 REF: For a set of variables you can use with
this input parameter, see the “Kernel Video
Variables” section.

 off: (optional) If defined, then the code in this variable is
used at the ending column position to turn off video
attributes instead of the default.

 REF: For a set of variables you can use with
this input parameter, see the “Kernel Video
Variables” section.

 save: (optional) Possible values:

• 1—Save control sequence for later use (to be
restored with RESTORE^VALM10).

• 0

Output: None.

5.6.3 RESTORE^VALM10(): Restores Video Attributes
Reference Type: Supported
Category: ListMan
ICR #: 10117
Description: This API restores the video attributes that have been saved for the

indicated line. This subroutine does not re-write the line to the screen; use
WRITE^VALM10 after restoring video attributes to actually WRITE the
line.

Format: RESTORE^VALM10(line)

Input Parameters: line: (required) Line number for which you want to restore
video attributes.

ListMan 1.0 54 June 2023
Developer’s Guide

Output: None.

5.6.4 SAVE^VALM10(): Save Current Video Attributes
Reference Type: Supported
Category: ListMan
ICR #: 10117
Description: This API saves the current video attributes for the indicated line.
Format: SAVE^VALM10(line)

Input Parameters: line: (required) Line number for which you want to save
the current video attributes.

Output: None.

5.6.5 SELECT^VALM10(): Highlights/Unhighlights Line in List
Reference Type: Supported
Category: ListMan
ICR #: 10117
Description: This API highlights (selects)/unhighlights (deselects) a line in the list. The

API sets up or deletes the proper video controls and then “WRITEs” the
line to the screen.

Format: SELECT^VALM10(line,mode)

Input Parameters: line: (required) Line number of line to
highlight/unhighlight (select). The line must be one
that is currently displayed on the screen.

 mode: (required) Possible values:

• 1—Highlight (select).

• 0—Unhighlight (deselect) and restore to
original state.

Output: None.

ListMan 1.0 55 June 2023
Developer’s Guide

5.6.6 WRITE^VALM10(): Re-Write Line to Screen
Reference Type: Supported
Category: ListMan
ICR #: 10117
Description: This API re-writes a line to the screen.
Format: WRITE^VALM10(line)

Input Parameters: line: (required) Number of the line in the list to re-write to
the screen.

Output: None.

5.7 Screen Control APIs

5.7.1 CHGCAP^VALM(): Changes Label on Caption Header
Reference Type: Supported
Category: ListMan
ICR #: 10118
Description: This API changes a label on a caption header for a field defined in the

CAPTION LINE COLUMNS (#200) Multiple field in the LIST
TEMPLATE (#409.61) file.

Format: CHGCAP^VALM(field,label)

Input Parameters: field: (required) Caption field name.
 label: (required) Text for caption header.

Output: None.

ListMan 1.0 56 June 2023
Developer’s Guide

5.7.2 CLEAR^VALM1: Clean Up Screen after Error Occurs
Reference Type: Supported
Category: ListMan
ICR #: 10116
Description: Use this API in Programmer Mode during development to clean up the

screen after an error occurs. It changes the screen from Screen Mode to the
full scrolling region and clears the screen. Also, it turns off the following:

• Underline

• High Intensity

• Reverse Video

• Blinking

Format: CLEAR^VALM1

Input Parameters: None.
Output: None.

5.7.3 FULL^VALM1: Sets Screen to Full Scrolling Region
Reference Type: Supported
Category: ListMan
ICR #: 10116
Description: This API sets the screen to the full scrolling region.
Format: FULL^VALM1

Input Parameters: None.
Output: None.

5.7.4 INSTR^VALM1(): Inserts Text on Display Screen
Reference Type: Supported
Category: ListMan
ICR #: 10116
Description: This API inserts text on the display screen at the row and column

specified.
Format: INSTR^VALM1(string,column,row[,length][,erase])

Input Parameters: string: (required) String to insert.

ListMan 1.0 57 June 2023
Developer’s Guide

 column: (required) X coordinate.
 row: (required) Y coordinate.
 length: (optional) Number of characters to clear.
 erase: (optional) If a value (any value) is passed for this

parameter, the screen cells from (row,col) to
(row,col+length) are erased before the string is
displayed.

Output: None.

5.7.5 RE^VALM4: Re-Displays List Header and List Areas
Reference Type: Supported
Category: ListMan
ICR #: 10120
Description: This API re-displays the list header and list areas for the active list

application. It is often used to display the results of a change an action has
caused before passing control back to the List Manager.
Normally, you set VALMBCK=“R” and then returns control to the List
Manager.

Format: RE^VALM4

Input Parameters: None.
Output: None.

5.7.6 CLEAN^VALM10: Kills Data and Video Control Arrays
Reference Type: Supported
Category: ListMan
ICR #: 10117
Description: This API KILLs the data and video control arrays associated with the

active list. This call is commonly used to KILL the array related data
before re-building the array.

Format: CLEAN^VALM10

Input Parameters: None.
Output: None.

ListMan 1.0 58 June 2023
Developer’s Guide

5.7.7 KILL^VALM10(): Deletes Video Attributes
Reference Type: Supported
Category: ListMan
ICR #: 10117
Description: This API deletes video attributes. If the line input parameter is defined,

then only the attributes for that line are deleted.
Format: KILL^VALM10([line])

Input Parameters: line: (optional) Line number for which you want to delete
video attributes. If this parameter is not passed, then
all video attributes for the current list are deleted.

Output: None.

5.7.8 MSG^VALM10(): Post Message to “Message Window”
Reference Type: Supported
Category: ListMan
ICR #: 10117
Description: This API allows you to immediately post a message to the “message

window” located in the lower frame bar of the List Manager display
screen.

 NOTE: To display a custom message when List Manager re-
displays the screen after an action is performed, set the VALMSG
variable to the desired message text.

Format: MSG^VALM10([message])

Input Parameters: message: (optional) Text up to 50 characters. If you do not
pass this string, any custom message currently
displayed is turned off, and List Manager’s standard
message is re-displayed.

Output: None.

ListMan 1.0 59 June 2023
Developer’s Guide

5.8 Conversion APIs

5.8.1 $$FDATE^VALM1(): Returns Date in “MM/DD/YY” Format
Reference Type: Supported
Category: ListMan
ICR #: 10116
Description: This extrinsic function returns a date in the following format:

MM/DD/YY

For example: 12/12/22.
Format: S X=$$FDATE^VALM1(fmdate)

Input Parameters: fmdate: (required) VA FileMan formatted date.
Output: return value: Returns date in “MM/DD/YY” format.

5.8.2 $$FDTTM^VALM1(): Returns Date/Time in
“MM/DD/YY@HH:MM” Format

Reference Type: Supported
Category: ListMan
ICR #: 10116
Description: This extrinsic function returns a date/time in the following format:

MM/DD/YY@HH:MM

For example: 12/12/22@09:00
Format: S X=$$FDTTM^VALM1(fmdate)

Input Parameters: fmdate: (required) VA FileMan formatted date/time.
Output: return value: Returns date/time in “MM/DD/YY@HH:MM”

format.

ListMan 1.0 60 June 2023
Developer’s Guide

5.8.3 $$FTIME^VALM1(): Returns Date/Time in “MMM DD,
YYYY@HH:MM” Format

Reference Type: Supported
Category: ListMan
ICR #: 10116
Description: This extrinsic function returns a date/time in the following format:

MMM DD, YYYY@HH:MM

For example: DEC 12, 2022@09:00
Format: S X=$$FTIME^VALM1(fmdate)

Input Parameters: fmdate: (required) VA FileMan formatted date/time.
Output: return value: Returns date/time in

“MMM DD, YYYY@HH:MM” format.

5.8.4 $$LOWER^VALM1(): Converts String from Uppercase to
Lowercase

Reference Type: Supported
Category: ListMan
ICR #: 10116
Description: This extrinsic function converts a string from uppercase to lowercase. It

parses the string using a space, comma, and a “/”. It starts with the second
character after each delimiter.
If your line of text contains many consecutive spaces, it is often faster to
execute this function as you build each portion of the line, instead of after
the line has been completely built.

Format: S X=$$LOWER^VALM1(string)

Input Parameters: string: (required) String to convert.
Output: return value: Returns converted string.

ListMan 1.0 61 June 2023
Developer’s Guide

5.8.4.1 Example

>S X="PATIENT,ONE AND/OR PATIENT,TWO"
>S X=$$LOWER^VALM1(X)
>W X
Patient,One And/Or Patient,Two

5.8.5 $$NOW^VALM1: Returns Value of “NOW” in External Format
Reference Type: Supported
Category: ListMan
ICR #: 10116
Description: This extrinsic function returns the value of “NOW” in external format.
Format: S X=$$NOW^VALM1

Input Parameters: None.
Output: return value: Returns value of “NOW” in $$FTIME^VALM1

format (e.g., “Mar 06, 2023 11:15:29”).

5.8.6 $$UPPER^VALM1(): Converts String from Lowercase to
Uppercase

Reference Type: Supported
Category: ListMan
ICR #: 10116
Description: This extrinsic function converts a string from lowercase to uppercase.
Format: S X=$$UPPER^VALM1(string)

Input Parameters: string: (required) String to convert.
Output: return value: Returns converted string.

ListMan 1.0 62 June 2023
Developer’s Guide

Index

$
$$FDATE^VALM1, 59
$$FDTTM^VALM1, 59
$$FTIME^VALM1, 60
$$LOWER^VALM1, 60
$$NOW^VALM1, 61
$$SETFLD^VALM1, 12, 49
$$SETSTR^VALM1, 49
$$UPPER^VALM1, 61

@
@VALMAR@("IDX") Variables, 40
@VALMAR@(#,0) Variable, 40

A
Action Area, 2, 3, 9, 17, 20
Actions

Calling List Manager and Other Programs
from Actions, 21

Creating, 14
Defining, 14
DISPLAY, 31
EXPANDED, 36
How To Define, 14
Overriding the Default Action, 19
Print List, 32
PROTOCOL, 25
PROTOCOL, 31
Supplied by List Manager), 42

ALLOWABLE NUMBER OF ACTIONS
(#.12) Field, 33

API
ENDR^%ZISS, 41

APIs
Conversion, 59
DIR, 44
General, 43
List Line Text, 48
List Line Video, 51
Screen Control, 55

ARRAY NAME (#107) Field, 36, 49, 51
ARRAY NAME Field, 10, 11, 21, 35
Arrays

Build the List Array Using List
Manager’s API, 11

Build the List Array Yourself, 11
Creating, 10
Creating the Array with SET^VALM10,

11
Defining, 10
Store the List, 10
VALMHDR, 9

Assumptions, xiv
Attributes

Blink Off, 41
Blink On, 41
High Intensity, 41
Normal Video, 41
Reverse Video Off, 41
Reverse Video On, 41
Setting and Displaying Video Attributes

for List Lines with
FLDCTRL^VALM10, 13

Setting Video Attributes in Your List
Line, 19

Terminal Type Attributes for List
Manager Users, 5

Underline Off, 41
Underline On, 41

AUTOMATIC DEFAULTS (#.14) Field, 34

B
Blink Off Attribute, 41
Blink On Attribute, 41
BOTTOM MARGIN (#.06) Fields, 32
Browsing

Word-Processing Fields, 21
Build the List Array Using List Manager’s

API, 11
Build the List Array Yourself, 11

ListMan 1.0 63 June 2023
Developer’s Guide

C
Calling List Manager and Other Programs

from Actions, 21
Callout Boxes, x
Calls

DIR, 15, 19
CAPTION LINE COLUMNS (#200) Field,

37, 48, 50, 55
Caption Line Information Fields

CAPTION LINE COLUMNS (#200)
Field, 37

COLUMN (#.02) Field, 37
DEFAULT VIDEO ATTRIBUTES (#.05)

Field, 38
DISPLAY TEXT (#.04) Field, 37
ITEM NAME (#.01) Field, 37
SCROLL LOCK (#.06) Field, 38
WIDTH (#.03) Field, 37

CHGCAP^VALM, 55
CLEAN^VALM10, 57
CLEAR^VALM1, 56
CNTRL^VALM10, 51
Code

Examples, 23
COLUMN (#.02) Field, 37
COLUMN WIDTH Field, 17
Columnar Arrangement of Menu Items, 18
Columns

Columnar Arrangement of Menu Items,
18

Scroll-Locking, 20
Components

Major List Manager Components, 4
Contents, iii
Conversion APIs, 59
Create a New List Template, 6
Create an Outline Routine, 6
Creating the Array with SET^VALM10, 11

D
Data Dictionary

Data Dictionary Utilities Menu, xiv
Listings, xiv

DATE RANGE LIMIT (#.13) Field, 33

DEFAULT VIDEO ATTRIBUTES (#.05)
Field, 38, 52

Define List Actions, 14
Define List Array, 10
Define List Menu, 17
Define List Template, 6
Demographics Fields

ENTITY NAME (#.09) Field, 31
Name field, 31
SCREEN TITLE (#.11) Field, 31

DI DDU Menu, xiv
DILIST Option, xiv
DIR API, 44
DIR Call, 15, 19
DIR(0) Variable, 15
Disclaimers

Documentation, ix
Software, viii

DISPLAY Action, 31
DISPLAY TEXT (#.04) Field, 37
Documentation

Symbols, ix
Documentation Conventions, ix
Documentation Disclaimer, ix
Documentation Navigation, xiii

E
Edit the List Template, 7
Edit the Outline Routine, 8
EN Outline Routine Tag, 9
EN^VALM, 43
EN^VALM2, 44
ENDR^%ZISS API, 41
ENTITY NAME (#.09) Field, 31
ENTRY ACTION Field, 14, 19
ENTRY CODE (#106) Field, 35, 36, 44
ENTRY CODE Field, 10, 11
Entry Selection, 19
Entry Selection and Light Bar Scrolling, 19
Examples

Code, 23
EXIT ACTION Field, 14
EXIT CODE (#105) Field, 35
EXIT Outline Routine Tag, 9
EXPAND CODE (#102) Field, 36
EXPANDED Action, 36

ListMan 1.0 64 June 2023
Developer’s Guide

EXPND Outline Routine Tag, 9
Export Your List Manager Application, 21
Exporting

List Manager Applications, 21

F
Fields

ALLOWABLE NUMBER OF ACTIONS
(#.12), 33

ARRAY NAME, 10, 11, 21, 35
ARRAY NAME (#107), 36, 49, 51
AUTOMATIC DEFAULTS (#.14), 34
BOTTOM MARGIN (#.06), 32
CAPTION LINE COLUMNS (#200), 37,

48, 50, 55
COLUMN (#.02), 37
COLUMN WIDTH, 17
DATE RANGE LIMIT (#.13), 33
DEFAULT VIDEO ATTRIBUTES

(#.05), 38, 52
DISPLAY TEXT (#.04), 37
ENTITY NAME (#.09), 31
ENTRY ACTION, 14, 19
ENTRY CODE, 10, 11
ENTRY CODE (#106), 35, 36, 44
EXIT ACTION, 14
EXIT CODE (#105), 35
EXPAND CODE (#102), 36
HEADER, 17, 18
HEADER CODE (#100), 34, 40, 43
HELP CODE (#103), 36
HIDDEN MENU (#1.02), 32
ITEM NAME (#.01), 37
ITEM TEXT, 14
MNEMONIC WIDTH, 17
NAME (#.01), 31
OK TO TRANSPORT ? (#.07), 33
PRINT PROTOCOL (#1.01), 32
PROTOCOL MENU, 17
PROTOCOL MENU (#.1), 32
RIGHT MARGIN (#.04), 32, 38
SCREEN TITLE (#.11), 31
SCROLL LOCK (#.06), 38
TOP MARGIN (#.05) Field, 32
TYPE OF LIST, 17
TYPE OF LIST (#.02), 31, 32, 36

USE CURSOR CONTROL (#.08), 33
WIDTH (#.03), 37
Word-Processing

Browsing, 21
Figures, vi
Files

LIST TEMPLATE (#409.61), 4, 44, 48,
50, 55

NEW PERSON (#200), 13
PROTOCOL (#101), 4, 14, 42

Fine Tune Your Application, 19
FLDCTRL^VALM10, 52
FLDTEXT^VALM10, 50
FLDUPD^VALM1, 48
FULL^VALM1, 56

G
General APIs, 43
Generic Actions

Supplied by List Manager, 42
Getting Started, 2

H
HDR Outline Routine Tag, 9
Header Area, 2, 3, 9
HEADER CODE (#100) Field, 34, 40, 43
HEADER Field, 17, 18
Help

At Prompts, xiii
Online, xiii
Question Marks, xiii

HELP CODE (#103) Field, 36
HELP Outline Routine Tag, 9
Hidden Menu, 18, 43
HIDDEN MENU (#1.02) Field, 32
High Intensity Attribute, 41
History, Revisions to Documentation and

Patches, ii
Home Pages

Adobe Website, xiv
ListMan Website, xiv
SPM Website, ix
VA Software Document Library (VDL),

xiv
How to

Obtain Technical Information Online, xiii

ListMan 1.0 65 June 2023
Developer’s Guide

Use this Manual, viii
How To Define an Action, 14
How to Make a List Manager Application, 6
How to Select List Items, 15

I
INIT Outline Routine Tag, 9, 39, 40
Installation, 4, 5
INSTR^VALM1, 56
Intended Audience, viii
Introduction, 1
ITEM NAME (#.01) Field, 37
ITEM TEXT Field, 14

K
Kernel

Video Variables, 41
Kernel Installation and Distribution System

(KIDS), 21, 22, 33
KIDS

Kernel Installation and Distribution
System, 21, 22, 33

KILL^VALM10, 58

L
Lines

Updating, 20
List Area, 2, 3
List File Attributes Option, xiv
List Line Text APIs, 48
List Line Video APIs, 51
List Manager

Generic Action Protocols, 42
Main Screen, 2
Workbench

VALMWB, 3
List Region Fields

BOTTOM MARGIN (#.06) Field, 32
RIGHT MARGIN (#.04) Field, 32
TOP MARGIN (#.05) Field, 32

List Template, 4, 6, 7, 9, 10, 11, 12, 13, 14,
19, 21, 23, 30, 31, 32, 33, 34, 35, 36, 39,
42, 43, 49, 50, 51, 53
Creating, 6
Defining, 6

Editing, 7
LIST TEMPLATE (#409.61) File, 4, 44, 48,

50, 55
ListMan

$$FDATE^VALM1, 59
$$FDTTM^VALM1, 59
$$FTIME^VALM1, 60
$$LOWER^VALM1, 60
$$NOW^VALM1, 61
$$SETFLD^VALM1, 49
$$SETSTR^VALM1, 49
$$UPPER^VALM1, 61
CHGCAP^VALM, 55
CLEAN^VALM10, 57
CLEAR^VALM1, 56
CNTRL^VALM10, 51
EN^VALM, 43
EN^VALM2, 44
FLDCTRL^VALM10, 52
FLDTEXT^VALM10, 50
FLDUPD^VALM1, 48
FULL^VALM1, 56
INSTR^VALM1, 56
KILL^VALM10, 58
MSG^VALM10, 58
PAUSE^VALM1, 44
RANGE^VALM1, 44
RE^VALM4, 57
RESTORE^VALM10, 53
SAVE^VALM10, 54
SELECT^VALM10, 54
SET^VALM10, 51
SHOW^VALM, 43
Website, xiv
WRITE^VALM10, 55

Lists
Long, 21

Long Lists, 21

M
Major List Manager Components, 4
Menu

Creating, 17
Defining, 17

Menus

ListMan 1.0 66 June 2023
Developer’s Guide

Columnar Arrangement of Menu Items,
18

Data Dictionary Utilities, xiv
DI DDU, xiv
Hidden, 18
PROTOCOL, 24
SDAM APPOINTMENT MENU, 24
Steps to Set Up Your Application’s

Menu, 17
Sub-Menus, 18

Message Window, 16, 40, 58
MNEMONIC WIDTH Field, 17
Modes

Screen, 20, 56
Scrolling, 20

MSG^VALM10, 58
MUMPS Code Related Fields

ARRAY NAME (#107) Field, 36
ENTRY CODE (#106) Field, 35
EXIT CODE (#105) Field, 35
EXPAND CODE (#102) Field, 36
HEADER CODE (#100) Field, 34
HELP CODE (#103) Field, 36

N
NAME (#.01) Field, 31
NEW PERSON (#200) File, 13
Normal Video Attribute, 41

O
Obtaining

Data Dictionary Listings, xiv
OK TO TRANSPORT ? (#.07) Field, 33
Online

Documentation, xiii
Technical Information, How to Obtain,

xiii
Options

Data Dictionary Utilities, xiv
DI DDU, xiv
DILIST, xiv
List File Attributes, xiv

Orientation, viii
Other Fields

ALLOWABLE NUMBER OF ACTIONS
(#.12) Field, 33

AUTOMATIC DEFAULTS (#.14) Field,
34

DATE RANGE LIMIT (#.13) Field, 33
OK TO TRANSPORT ? (#.07) Field, 33
USE CURSOR CONTROL (#.08) Field,

33
Outline Routine, 6, 7, 8, 9, 10

Tag
EN, 9
EXIT, 9
EXPND, 9
HDR, 9
HELP, 9
INIT, 9, 39, 40

Overriding the Default Action, 19

P
Package Requirements, 4
Patches

History, ii
PAUSE^VALM1, 44
Print List Action, 32
PRINT PROTOCOL (#1.01) Field, 32
PROTOCOL (#101) File, 4, 14, 42
PROTOCOL Action, 25, 31
Protocol Information Fields

HIDDEN MENU (#1.02) Field, 32
PRINT PROTOCOL (#1.01) Field, 32
PROTOCOL MENU (#.1) Field, 32
TYPE OF LIST (#.02) Field, 31

PROTOCOL Menu, 24
PROTOCOL MENU (#.1) Fields, 32
PROTOCOL MENU Field, 17
Protocols

Supplied by List Manager, 42
VALM DOWN A LINE, 42
VALM FIRST SCREEN, 42
VALM GOTO PAGE, 42
VALM HIDDEN ACTIONS, 43
VALM LAST SCREEN, 42
VALM LEFT, 42
VALM NEXT SCREEN, 42
VALM PREVIOUS SCREEN, 42
VALM PRINT LIST, 42
VALM PRINT SCREEN, 42
VALM QUIT, 42

ListMan 1.0 67 June 2023
Developer’s Guide

VALM REFRESH, 42
VALM RIGHT, 42
VALM SEARCH LIST, 42
VALM TURN ON/OFF MENUS, 42
VALM UP ONE LINE, 42

PS Anonymous Directories, xv

Q
Question Mark Help, xiii

R
RANGE^VALM1, 44
RE^VALM4, 57
Reference Materials, xiv
Reference Type

Supported
$$FDATE^VALM1, 59
$$FDTTM^VALM1, 59
$$FTIME^VALM1, 60
$$LOWER^VALM1, 60
$$NOW^VALM1, 61
$$SETFLD^VALM1, 49
$$SETSTR^VALM1, 49
$$UPPER^VALM1, 61
CHGCAP^VALM, 55
CLEAN^VALM10, 57
CLEAR^VALM1, 56
CNTRL^VALM10, 51
EN^VALM, 43
EN^VALM2, 44
FLDCTRL^VALM10, 52
FLDTEXT^VALM10, 50
FLDUPD^VALM1, 48
FULL^VALM1, 56
INSTR^VALM1, 56
KILL^VALM10, 58
MSG^VALM10, 58
PAUSE^VALM1, 44
RANGE^VALM1, 44
RE^VALM4, 57
RESTORE^VALM10, 53
SAVE^VALM10, 54
SELECT^VALM10, 54
SET^VALM10, 51
SHOW^VALM, 43
WRITE^VALM10, 55

Requirements
Package, 4

RESTORE^VALM10, 53
Reverse Video Off Attribute, 41
Reverse Video On Attribute, 41
Revision History, ii

Patches, ii
RIGHT MARGIN (#.04) Field, 32, 38
Routine to Create List, 10
Routines

Outline, 7, 8, 9, 10
VALMINIT, 5
VALMWB, 3

S
SAVE^VALM10, 54
Screen

Main, 2
Screen Control APIs, 55
Screen Mode, 20, 56
SCREEN TITLE (#.11) Field, 31
Screens

Using the Entire Screen, 16
SCROLL LOCK (#.06) Field, 38
Scrolling Mode, 20
Scroll-Locking Columns, 20
SDAM APPOINTMENT MENU, 24
SELECT^VALM10, 54
Selecting

Entry Selection and Light Bar Scrolling,
19

Items, 19
List Items, 15

SET^VALM10, 51
Setting and Displaying Video Attributes for

List Lines with FLDCTRL^VALM10, 13
Setting Up Text Lines with Captions and

$$SETFLD^VALM1, 12
Setting Video Attributes in Your List Line,

19
Setup, 4
SHOW^VALM, 43
Software Disclaimer, viii
Steps to Set Up Your Application’s Menu,

17
Sub-Menus, 18

ListMan 1.0 68 June 2023
Developer’s Guide

Symbols
Found in the Documentation, ix

T
Table of Contents, iii
Tables, vi
Terminal Type Attributes for List Manager

Users, 5
TOP MARGIN (#.05) Field, 32
TYPE OF LIST (#.02) Field, 31, 32, 36
TYPE OF LIST Field, 17, 31

U
Underline Off Attribute, 41
Underline On Attribute, 41
Updating

List Lines, 20
Updating Items in the List, 20
URLs

Adobe Website, xiv
ListMan Website, xiv
SPM Website, ix
VA Software Document Library (VDL),

xiv
USE CURSOR CONTROL (#.08) Field, 33
Use this Manual, How to, viii
Using the Entire Screen, 16

V
VA FileMan, xiii, xiv, 10, 21, 35, 36, 44, 59,

60
Browser, 21

VA Software Document Library (VDL)
Website, xiv

VALM
CHGCAP^VALM, 55
EN^VALM, 43
SHOW^VALM, 43

VALM DOWN A LINE Protocol, 42
VALM FIRST SCREEN Protocol, 42
VALM GOTO PAGE Protocol, 42
VALM HIDDEN ACTIONS Protocol, 43
VALM LAST SCREEN Protocol, 42
VALM LEFT Protocol, 42
VALM NEXT SCREEN Protocol, 42

VALM PREVIOUS SCREEN Protocol, 42
VALM PRINT LIST Protocol, 42
VALM PRINT SCREEN Protocol, 42
VALM QUIT Protocol, 42
VALM REFRESH Protocol, 42
VALM RIGHT Protocol, 42
VALM SEARCH LIST Protocol, 42
VALM TURN ON/OFF MENUS Protocol,

42
VALM UP ONE LINE Protocol, 42
VALM(TITLE) Variable, 39
VALM1

$$FDATE^VALM1, 59
$$FDTTM^VALM1, 59
$$FTIME^VALM1, 60
$$LOWER^VALM1, 60
$$NOW^VALM1, 61
$$SETFLD^VALM1, 49
$$SETSTR^VALM1, 49
$$UPPER^VALM1, 61
CLEAR^VALM1, 56
FLDUPD^VALM1, 48
FULL^VALM1, 56
INSTR^VALM1, 56
PAUSE^VALM1, 44
RANGE^VALM1, 44

VALM10
CLEAN^VALM10, 57
CNTRL^VALM10, 51
FLDCTRL^VALM10, 52
FLDTEXT^VALM10, 50
KILL^VALM10, 58
MSG^VALM10, 58
RESTORE^VALM10, 53
SAVE^VALM10, 54
SELECT^VALM10, 54
SET^VALM10, 51
WRITE^VALM10, 55

VALM2
EN^VALM2, 44

VALM4
RE^VALM4, 57

VALMBCK Variables, 16, 20, 34, 39, 40,
57

VALMBG Variables, 35, 39
VALMCC Variable, 20

ListMan 1.0 69 June 2023
Developer’s Guide

VALMCC Variables, 39
VALMCNT Variable, 11, 12
VALMCNT Variables, 35, 39
VALMDDF() Variable, 38, 39
VALMHDR Array, 9
VALMHDR() Variable, 34, 40
VALMINIT Routine, 5
VALMQUIT Variable, 40
VALMQUIT Variables, 35, 40
VALMSG Variable, 16, 58
VALMSG Variables, 40
VALMST Variables, 40
VALMWB Routine, 3
Variables

@VALMAR@("IDX"), 40
@VALMAR@(#,0), 40
DIR(0), 15
Kernel Video Variables, 41
VALM(TITLE), 39
VALMBCK, 16, 20, 39, 40
VALMBCK Variables, 34
VALMBG, 35, 39
VALMCC, 20, 39
VALMCNT, 11, 12, 35, 39
VALMDDF(), 38, 39
VALMHDR(), 34, 40
VALMQUIT, 35, 40
VALMQUIT variable, 40

VALMSG, 16, 40, 58
VALMST, 40
XQORM("B"), 41
XQORM(“B”), 34

Variables, List Manager, 39
VariablesVALMBCK, 57

W
Websites

Adobe Website, xiv
ListMan, xiv
SPM, ix
VA Software Document Library (VDL),

xiv
What Comes Next?, 9
When the User Is In Scrolling Mode (Not

Screen Mode), 20
WIDTH (#.03) Field, 37
Word-Processing Fields

Browsing, 21
Workbench, 3, 4, 6, 7, 10, 12, 13, 14, 17, 18,

30, 43
WRITE^VALM10, 55

X
XQORM("B") Variable, 41
XQORM(“B”) Variable, 34

	Title Page
	Revision History
	Patch Revisions
	Table of Contents
	List of Figures
	List of Tables
	Orientation
	1 Introduction
	2 Getting Started
	2.1 List Manager Main Screen
	2.2 List Manager Workbench—^VALMWB
	2.3 Installation and Setup
	2.3.1 Major List Manager Components
	2.3.2 Package Requirements
	2.3.3 Installation
	2.3.4 Terminal Type Attributes for List Manager Users

	3 How to Make a List Manager Application
	3.1 Define List Template
	3.1.1 Create a New List Template
	3.1.2 Create an Outline Routine
	3.1.3 Edit the List Template
	3.1.4 Edit the Outline Routine
	3.1.5 What Comes Next?

	3.2 Define List Array
	3.2.1 Routine to Create List
	3.2.2 Array to Store the List
	3.2.3 Build the List Array Yourself
	3.2.4 Build the List Array Using List Manager’s API
	3.2.4.1 Creating the Array with SET^VALM10
	3.2.4.2 Setting Up Text Lines with Captions and $$SETFLD^VALM1
	3.2.4.3 Setting and Displaying Video Attributes for List Lines with FLDCTRL^VALM10

	3.3 Define List Actions
	3.3.1 How To Define an Action
	3.3.2 How to Select List Items
	3.3.3 Using the Entire Screen
	3.3.4 When Your Action Completes

	3.4 Define List Menu
	3.4.1 Steps to Set Up Your Application’s Menu
	3.4.2 Hidden Menu
	3.4.3 Columnar Arrangement of Menu Items
	3.4.4 Sub-Menus
	3.4.5 Overriding the Default Action

	3.5 Fine Tune Your Application
	3.5.1 Entry Selection and Light Bar Scrolling
	3.5.2 Setting Video Attributes in Your List Line
	3.5.3 Updating Items in the List
	3.5.4 When the User Is In Scrolling Mode (Not Screen Mode)
	3.5.5 Scroll-Locking Columns
	3.5.6 Browsing Word-Processing Fields
	3.5.7 Long Lists
	3.5.8 Calling List Manager and Other Programs from Actions

	3.6 Export Your List Manager Application
	3.6.1 Protocols
	3.6.2 List Templates
	3.6.3 Before Kernel 8.0

	3.7 Example Code
	3.7.1 LIST TEMPLATE PROTOCOL MENU
	3.7.2 PROTOCOL Menu
	3.7.3 PROTOCOL Action
	3.7.4 DISPLAY TYPE
	3.7.5 Application Code Examples

	4 List Template Reference
	4.1 Fields
	4.1.1 Demographics Fields
	4.1.1.1 NAME (#.01)
	4.1.1.2 ENTITY NAME (#.09) [Optional]
	4.1.1.3 SCREEN TITLE (#.11) [Optional but Recommended] Screen Title Field

	4.1.2 Protocol Information Fields
	4.1.2.1 TYPE OF LIST (#.02)
	4.1.2.2 PROTOCOL MENU (#.1)
	4.1.2.3 PRINT PROTOCOL (#1.01) [Optional]
	4.1.2.4 HIDDEN MENU (#1.02) [Optional but Recommended]

	4.1.3 List Region Fields
	4.1.3.1 TOP MARGIN (#.05)
	4.1.3.2 BOTTOM MARGIN (#.06)
	4.1.3.3 RIGHT MARGIN (#.04) [Optional]

	4.1.4 Other Fields
	4.1.4.1 OK TO TRANSPORT ? (#.07)
	4.1.4.2 USE CURSOR CONTROL (#.08)
	4.1.4.3 ALLOWABLE NUMBER OF ACTIONS (#.12)
	4.1.4.4 DATE RANGE LIMIT (#.13) [Optional]
	4.1.4.5 AUTOMATIC DEFAULTS (#.14) [optional]

	4.1.5 MUMPS Code Related Fields
	4.1.5.1 HEADER CODE (#100)
	4.1.5.2 ENTRY CODE (#106)
	4.1.5.3 EXIT CODE (#105) [optional but recommended]
	4.1.5.4 EXPAND CODE (#102) [optional]
	4.1.5.5 HELP CODE (#103) [optional]
	4.1.5.6 ARRAY NAME (#107) [optional]

	4.1.6 Caption Line Information Fields
	4.1.6.1 CAPTION LINE COLUMNS (#200) [Optional]
	4.1.6.2 ITEM NAME (#.01)
	4.1.6.3 COLUMN (#.02)
	4.1.6.4 WIDTH (#.03)
	4.1.6.5 DISPLAY TEXT (#.04) [optional]
	4.1.6.6 DEFAULT VIDEO ATTRIBUTES (#.05) [optional]
	4.1.6.7 SCROLL LOCK (#.06) [Optional]

	5 Application Programming Interfaces (APIs)
	5.1 List Manager Variables
	5.2 Kernel Video Variables
	5.3 List Manager Generic Action Protocols
	5.4 General APIs
	5.4.1 EN^VALM(): Load a ListMan Template/Application
	5.4.2 SHOW^VALM: Display Menu to User
	5.4.3 PAUSE^VALM1: Pause the Screen
	5.4.4 RANGE^VALM1: Change Date Range
	5.4.5 EN^VALM2(): Generic Selector
	5.4.5.1 Examples
	5.4.5.1.1 Option “S” Example
	5.4.5.1.2 Option “SO” Quit Examples
	5.4.5.1.3 Option “L” Example
	5.4.5.1.4 Option “LO” Quit Examples

	5.5 List Line Text APIs
	5.5.1 FLDUPD^VALM1(): Update Caption Field
	5.5.2 $$SETFLD^VALM1(): Insert Text in a String
	5.5.3 $$SETSTR^VALM1(): Set Up String for Display
	5.5.3.1 Examples

	5.5.4 FLDTEXT^VALM10(): Inserts Text in a Column
	5.5.5 SET^VALM10(): Construct Initial List Array

	5.6 List Line Video APIs
	5.6.1 CNTRL^VALM10(): Set Video Attributes
	5.6.2 FLDCTRL^VALM10(): Activate Video Control Sequences
	5.6.3 RESTORE^VALM10(): Restores Video Attributes
	5.6.4 SAVE^VALM10(): Save Current Video Attributes
	5.6.5 SELECT^VALM10(): Highlights/Unhighlights Line in List
	5.6.6 WRITE^VALM10(): Re-Write Line to Screen

	5.7 Screen Control APIs
	5.7.1 CHGCAP^VALM(): Changes Label on Caption Header
	5.7.2 CLEAR^VALM1: Clean Up Screen after Error Occurs
	5.7.3 FULL^VALM1: Sets Screen to Full Scrolling Region
	5.7.4 INSTR^VALM1(): Inserts Text on Display Screen
	5.7.5 RE^VALM4: Re-Displays List Header and List Areas
	5.7.6 CLEAN^VALM10: Kills Data and Video Control Arrays
	5.7.7 KILL^VALM10(): Deletes Video Attributes
	5.7.8 MSG^VALM10(): Post Message to “Message Window”

	5.8 Conversion APIs
	5.8.1 $$FDATE^VALM1(): Returns Date in “MM/DD/YY” Format
	5.8.2 $$FDTTM^VALM1(): Returns Date/Time in “MM/DD/YY@HH:MM” Format
	5.8.3 $$FTIME^VALM1(): Returns Date/Time in “MMM DD, YYYY@HH:MM” Format
	5.8.4 $$LOWER^VALM1(): Converts String from Uppercase to Lowercase
	5.8.4.1 Example

	5.8.5 $$NOW^VALM1: Returns Value of “NOW” in External Format
	5.8.6 $$UPPER^VALM1(): Converts String from Lowercase to Uppercase

